L11n240
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n240's Link Presentations]
| Planar diagram presentation | X12,1,13,2 X16,8,17,7 X5,1,6,10 X3746 X9,5,10,4 X13,18,14,19 X19,22,20,11 X15,21,16,20 X21,15,22,14 X2,11,3,12 X8,18,9,17 |
| Gauss code | {1, -10, -4, 5, -3, 4, 2, -11, -5, 3}, {10, -1, -6, 9, -8, -2, 11, 6, -7, 8, -9, 7} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-1) \left(t(2) t(1)^2-t(2)^2 t(1)+2 t(2) t(1)-t(1)+t(2)\right)}{t(1)^{3/2} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{15/2}-2 q^{13/2}+3 q^{11/2}-4 q^{9/2}+3 q^{7/2}-3 q^{5/2}+2 q^{3/2}-\sqrt{q}-\frac{1}{\sqrt{q}}+\frac{1}{q^{3/2}}-\frac{1}{q^{5/2}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z a^{-7} + a^{-7} z^{-1} -2 z^3 a^{-5} -5 z a^{-5} -4 a^{-5} z^{-1} +z^5 a^{-3} +5 z^3 a^{-3} +10 z a^{-3} +6 a^{-3} z^{-1} -z^5 a^{-1} +a z^3-6 z^3 a^{-1} +3 a z-9 z a^{-1} +2 a z^{-1} -5 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^6 a^{-8} -4 z^4 a^{-8} +4 z^2 a^{-8} - a^{-8} +2 z^7 a^{-7} -8 z^5 a^{-7} +8 z^3 a^{-7} -4 z a^{-7} + a^{-7} z^{-1} +z^8 a^{-6} -z^6 a^{-6} -8 z^4 a^{-6} +9 z^2 a^{-6} -3 a^{-6} +4 z^7 a^{-5} -18 z^5 a^{-5} +24 z^3 a^{-5} -16 z a^{-5} +4 a^{-5} z^{-1} +z^8 a^{-4} -3 z^6 a^{-4} -2 z^4 a^{-4} +7 z^2 a^{-4} -3 a^{-4} +3 z^7 a^{-3} -20 z^5 a^{-3} +39 z^3 a^{-3} -27 z a^{-3} +6 a^{-3} z^{-1} +z^8 a^{-2} -7 z^6 a^{-2} +10 z^4 a^{-2} - a^{-2} +a z^7+2 z^7 a^{-1} -6 a z^5-16 z^5 a^{-1} +10 a z^3+33 z^3 a^{-1} -7 a z-22 z a^{-1} +2 a z^{-1} +5 a^{-1} z^{-1} +z^8-6 z^6+8 z^4-2 z^2-1 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



