L11a511
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a511's Link Presentations]
| Planar diagram presentation | X8192 X14,3,15,4 X20,12,21,11 X18,10,19,9 X22,16,13,15 X12,20,7,19 X10,22,11,21 X16,6,17,5 X2738 X4,13,5,14 X6,18,1,17 |
| Gauss code | {1, -9, 2, -10, 8, -11}, {9, -1, 4, -7, 3, -6}, {10, -2, 5, -8, 11, -4, 6, -3, 7, -5} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-t(1)^2 t(3)^3+t(1) t(3)^3+t(1)^2 t(2) t(3)^3-2 t(1) t(2) t(3)^3+t(2) t(3)^3+2 t(1)^2 t(3)^2+t(1)^2 t(2)^2 t(3)^2-2 t(1) t(2)^2 t(3)^2+t(2)^2 t(3)^2-2 t(1) t(3)^2-3 t(1)^2 t(2) t(3)^2+5 t(1) t(2) t(3)^2-3 t(2) t(3)^2+t(3)^2-t(1)^2 t(3)-t(1)^2 t(2)^2 t(3)+2 t(1) t(2)^2 t(3)-2 t(2)^2 t(3)+2 t(1) t(3)+3 t(1)^2 t(2) t(3)-5 t(1) t(2) t(3)+3 t(2) t(3)-t(3)-t(1) t(2)^2+t(2)^2-t(1)^2 t(2)+2 t(1) t(2)-t(2)}{t(1) t(2) t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^8+3 q^7-6 q^6+11 q^5-14 q^4+17 q^3-16 q^2+15 q-10+7 q^{-1} -3 q^{-2} + q^{-3} }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^4 a^{-6} -2 z^2 a^{-6} - a^{-6} +z^6 a^{-4} +3 z^4 a^{-4} +5 z^2 a^{-4} + a^{-4} z^{-2} +4 a^{-4} +z^6 a^{-2} +z^4 a^{-2} +a^2 z^2-3 z^2 a^{-2} -2 a^{-2} z^{-2} +a^2-5 a^{-2} -2 z^4-3 z^2+ z^{-2} +1 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^{-9} -2 z^3 a^{-9} +3 z^6 a^{-8} -6 z^4 a^{-8} +2 z^2 a^{-8} +5 z^7 a^{-7} -10 z^5 a^{-7} +6 z^3 a^{-7} -z a^{-7} +6 z^8 a^{-6} -14 z^6 a^{-6} +17 z^4 a^{-6} -9 z^2 a^{-6} +2 a^{-6} +4 z^9 a^{-5} -4 z^7 a^{-5} -2 z^5 a^{-5} +9 z^3 a^{-5} -3 z a^{-5} +z^{10} a^{-4} +10 z^8 a^{-4} -35 z^6 a^{-4} +53 z^4 a^{-4} -35 z^2 a^{-4} - a^{-4} z^{-2} +10 a^{-4} +7 z^9 a^{-3} -13 z^7 a^{-3} +7 z^5 a^{-3} +5 z^3 a^{-3} -8 z a^{-3} +2 a^{-3} z^{-1} +z^{10} a^{-2} +8 z^8 a^{-2} +a^2 z^6-27 z^6 a^{-2} -3 a^2 z^4+35 z^4 a^{-2} +3 a^2 z^2-29 z^2 a^{-2} -2 a^{-2} z^{-2} -a^2+12 a^{-2} +3 z^9 a^{-1} +3 a z^7-z^7 a^{-1} -8 a z^5-10 z^5 a^{-1} +5 a z^3+9 z^3 a^{-1} -6 z a^{-1} +2 a^{-1} z^{-1} +4 z^8-8 z^6+2 z^4-2 z^2- z^{-2} +4 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



