L11a115
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a115's Link Presentations]
| Planar diagram presentation | X6172 X14,3,15,4 X16,8,17,7 X22,18,5,17 X18,11,19,12 X20,9,21,10 X10,19,11,20 X8,21,9,22 X12,16,13,15 X2536 X4,13,1,14 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -8, 6, -7, 5, -9, 11, -2, 9, -3, 4, -5, 7, -6, 8, -4} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 u v^3-7 u v^2+10 u v-4 u-4 v^3+10 v^2-7 v+2}{\sqrt{u} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{11}{q^{9/2}}+\frac{14}{q^{7/2}}+q^{5/2}-\frac{15}{q^{5/2}}-4 q^{3/2}+\frac{13}{q^{3/2}}-\frac{1}{q^{17/2}}+\frac{2}{q^{15/2}}-\frac{5}{q^{13/2}}+\frac{8}{q^{11/2}}+7 \sqrt{q}-\frac{11}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 z^{-1} -3 a^7 z-2 a^7 z^{-1} +3 a^5 z^3+3 a^5 z+a^5 z^{-1} -a^3 z^5+a^3 z^{-1} -a z^5-a z^3+z^3 a^{-1} -2 a z-a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^9 z^7-5 a^9 z^5+8 a^9 z^3-5 a^9 z+a^9 z^{-1} +2 a^8 z^8-8 a^8 z^6+9 a^8 z^4-4 a^8 z^2+a^8+2 a^7 z^9-4 a^7 z^7-7 a^7 z^5+18 a^7 z^3-12 a^7 z+2 a^7 z^{-1} +a^6 z^{10}+3 a^6 z^8-20 a^6 z^6+25 a^6 z^4-12 a^6 z^2+3 a^6+6 a^5 z^9-15 a^5 z^7+4 a^5 z^5+11 a^5 z^3-8 a^5 z+a^5 z^{-1} +a^4 z^{10}+8 a^4 z^8-29 a^4 z^6+30 a^4 z^4-12 a^4 z^2+2 a^4+4 a^3 z^9-2 a^3 z^7-7 a^3 z^5+4 a^3 z^3+2 a^3 z-a^3 z^{-1} +7 a^2 z^8-10 a^2 z^6+6 a^2 z^4+z^4 a^{-2} -4 a^2 z^2+a^2+8 a z^7-9 a z^5+4 z^5 a^{-1} -3 z^3 a^{-1} +3 a z-a z^{-1} +7 z^6-7 z^4 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



