L11n175

From Knot Atlas
Revision as of 18:00, 2 September 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11n174.gif

L11n174

L11n176.gif

L11n176

L11n175.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n175 at Knotilus!


Link Presentations

[edit Notes on L11n175's Link Presentations]

Planar diagram presentation X8192 X9,21,10,20 X14,5,15,6 X18,12,19,11 X3,10,4,11 X12,7,13,8 X16,13,17,14 X22,17,7,18 X6,15,1,16 X4,21,5,22 X19,2,20,3
Gauss code {1, 11, -5, -10, 3, -9}, {6, -1, -2, 5, 4, -6, 7, -3, 9, -7, 8, -4, -11, 2, 10, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n175 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-2         22
-4        31-2
-6       51 4
-8      53  -2
-10     65   1
-12    55    0
-14   46     -2
-16  36      3
-18 13       -2
-20 3        3
-221         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n174.gif

L11n174

L11n176.gif

L11n176