L11n192
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n192's Link Presentations]
| Planar diagram presentation | X8192 X14,9,15,10 X4758 X16,6,17,5 X18,16,19,15 X6,18,1,17 X19,7,20,22 X11,20,12,21 X21,10,22,11 X2,14,3,13 X12,4,13,3 |
| Gauss code | {1, -10, 11, -3, 4, -6}, {3, -1, 2, 9, -8, -11, 10, -2, 5, -4, 6, -5, -7, 8, -9, 7} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u v-u-v+2) (2 u v-u-v+1)}{u v} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{9/2}+3 q^{7/2}-6 q^{5/2}+7 q^{3/2}-9 \sqrt{q}+\frac{8}{\sqrt{q}}-\frac{7}{q^{3/2}}+\frac{5}{q^{5/2}}-\frac{3}{q^{7/2}}+\frac{1}{q^{9/2}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^3 z^3-z^3 a^{-3} -a^3 z-z a^{-3} - a^{-3} z^{-1} +a z^5+z^5 a^{-1} +2 a z^3+2 z^3 a^{-1} +a z+2 z a^{-1} + a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^3 a^{-5} -z a^{-5} +a^4 z^6-3 a^4 z^4+3 z^4 a^{-4} +2 a^4 z^2-2 z^2 a^{-4} +3 a^3 z^7+z^7 a^{-3} -10 a^3 z^5+8 a^3 z^3+2 z^3 a^{-3} -2 a^3 z- a^{-3} z^{-1} +3 a^2 z^8+2 z^8 a^{-2} -8 a^2 z^6-5 z^6 a^{-2} +3 a^2 z^4+9 z^4 a^{-2} -4 z^2 a^{-2} + a^{-2} +a z^9+z^9 a^{-1} +3 a z^7+z^7 a^{-1} -16 a z^5-6 z^5 a^{-1} +13 a z^3+6 z^3 a^{-1} -3 a z- a^{-1} z^{-1} +5 z^8-14 z^6+12 z^4-4 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



