L11n101
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n101's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X13,21,14,20 X16,7,17,8 X8,19,9,20 X18,9,19,10 X10,17,11,18 X15,5,16,22 X21,15,22,14 X2536 X4,11,1,12 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 4, -5, 6, -7, 11, -2, -3, 9, -8, -4, 7, -6, 5, 3, -9, 8} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 u v^3-5 u v^2+7 u v-3 u-3 v^3+7 v^2-5 v+2}{\sqrt{u} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{5/2}-4 q^{3/2}+7 \sqrt{q}-\frac{10}{\sqrt{q}}+\frac{11}{q^{3/2}}-\frac{12}{q^{5/2}}+\frac{10}{q^{7/2}}-\frac{7}{q^{9/2}}+\frac{4}{q^{11/2}}-\frac{2}{q^{13/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^7 z^{-1} +z^3 a^5-z a^5-2 a^5 z^{-1} -z^5 a^3-z^3 a^3+2 a^3 z^{-1} -z^5 a-z^3 a-z a-a z^{-1} +z^3 a^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ 3 a^7 z^5-8 a^7 z^3+5 a^7 z-a^7 z^{-1} +a^6 z^8-4 a^6 z^4+3 a^6 z^2+a^5 z^9+2 a^5 z^5-11 a^5 z^3+9 a^5 z-2 a^5 z^{-1} +5 a^4 z^8-7 a^4 z^6-a^4 z^4+4 a^4 z^2-a^4+a^3 z^9+7 a^3 z^7-13 a^3 z^5+a^3 z^3+6 a^3 z-2 a^3 z^{-1} +4 a^2 z^8-6 a^2 z^4+z^4 a^{-2} +2 a^2 z^2+7 a z^7-8 a z^5+4 z^5 a^{-1} +a z^3-3 z^3 a^{-1} +2 a z-a z^{-1} +7 z^6-8 z^4+z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



