L11a535

From Knot Atlas
Revision as of 18:04, 2 September 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11a534.gif

L11a534

L11a536.gif

L11a536

L11a535.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a535 at Knotilus!


Link Presentations

[edit Notes on L11a535's Link Presentations]

Planar diagram presentation X6172 X2536 X18,12,19,11 X10,3,11,4 X4,9,1,10 X16,7,17,8 X8,15,5,16 X22,18,15,17 X20,14,21,13 X12,20,13,19 X14,22,9,21
Gauss code {1, -2, 4, -5}, {2, -1, 6, -7}, {5, -4, 3, -10, 9, -11}, {7, -6, 8, -3, 10, -9, 11, -8}
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a535 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
12           1-1
10          3 3
8         41 -3
6        73  4
4       97   -2
2      64    2
0     710     3
-2    55      0
-4   28       6
-6  34        -1
-8 15         4
-10            0
-121           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a534.gif

L11a534

L11a536.gif

L11a536