L10n9
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n9's Link Presentations]
| Planar diagram presentation | X6172 X16,7,17,8 X4,17,1,18 X9,14,10,15 X8493 X5,11,6,10 X11,5,12,20 X13,19,14,18 X19,13,20,12 X2,16,3,15 |
| Gauss code | {1, -10, 5, -3}, {-6, -1, 2, -5, -4, 6, -7, 9, -8, 4, 10, -2, 3, 8, -9, 7} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u-1) (v-1)}{\sqrt{u} \sqrt{v}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{11/2}+q^{9/2}-q^{7/2}+q^{5/2}-q^{3/2}+\sqrt{q}-\frac{1}{\sqrt{q}}-\frac{1}{q^{5/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^{-5} - a^{-5} z^{-1} +z^3 a^{-3} +a^3 z^{-1} +3 z a^{-3} +2 a^{-3} z^{-1} -a z-a z^{-1} -z a^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^8 a^{-2} -z^8 a^{-4} -z^7 a^{-1} -2 z^7 a^{-3} -z^7 a^{-5} +6 z^6 a^{-2} +6 z^6 a^{-4} +6 z^5 a^{-1} +12 z^5 a^{-3} +6 z^5 a^{-5} -11 z^4 a^{-2} -10 z^4 a^{-4} -z^4-11 z^3 a^{-1} -21 z^3 a^{-3} -10 z^3 a^{-5} +9 z^2 a^{-2} +5 z^2 a^{-4} +4 z^2-a^3 z-a z+8 z a^{-1} +13 z a^{-3} +5 z a^{-5} -a^2-3 a^{-2} - a^{-4} -2+a^3 z^{-1} +a z^{-1} - a^{-1} z^{-1} -2 a^{-3} z^{-1} - a^{-5} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



