L11a119
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a119's Link Presentations]
| Planar diagram presentation | X6172 X14,3,15,4 X18,8,19,7 X22,20,5,19 X20,11,21,12 X10,21,11,22 X16,10,17,9 X12,16,13,15 X8,18,9,17 X2536 X4,13,1,14 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -9, 7, -6, 5, -8, 11, -2, 8, -7, 9, -3, 4, -5, 6, -4} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(v-2) (2 v-1) (u v-2 u-2 v+1)}{\sqrt{u} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{9/2}-4 q^{7/2}+7 q^{5/2}-12 q^{3/2}+16 \sqrt{q}-\frac{17}{\sqrt{q}}+\frac{17}{q^{3/2}}-\frac{15}{q^{5/2}}+\frac{10}{q^{7/2}}-\frac{6}{q^{9/2}}+\frac{2}{q^{11/2}}-\frac{1}{q^{13/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^7 z^{-1} -3 z a^5-a^5 z^{-1} +3 z^3 a^3-a^3 z^{-1} -z^5 a+2 z^3 a+4 z a+2 a z^{-1} -z^5 a^{-1} -z^3 a^{-1} -3 z a^{-1} - a^{-1} z^{-1} +z^3 a^{-3} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a^2 z^{10}-z^{10}-3 a^3 z^9-7 a z^9-4 z^9 a^{-1} -4 a^4 z^8-9 a^2 z^8-6 z^8 a^{-2} -11 z^8-3 a^5 z^7-a^3 z^7+8 a z^7+2 z^7 a^{-1} -4 z^7 a^{-3} -2 a^6 z^6+5 a^4 z^6+25 a^2 z^6+16 z^6 a^{-2} -z^6 a^{-4} +35 z^6-a^7 z^5+2 a^5 z^5+8 a^3 z^5+10 a z^5+16 z^5 a^{-1} +11 z^5 a^{-3} +3 a^6 z^4-6 a^4 z^4-30 a^2 z^4-12 z^4 a^{-2} +2 z^4 a^{-4} -35 z^4+3 a^7 z^3+3 a^5 z^3-12 a^3 z^3-23 a z^3-18 z^3 a^{-1} -7 z^3 a^{-3} +5 a^4 z^2+16 a^2 z^2+4 z^2 a^{-2} +15 z^2-3 a^7 z-3 a^5 z+7 a^3 z+13 a z+6 z a^{-1} -a^6-2 a^4-3 a^2-1+a^7 z^{-1} +a^5 z^{-1} -a^3 z^{-1} -2 a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



