L11a122
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a122's Link Presentations]
| Planar diagram presentation | X6172 X14,3,15,4 X18,8,19,7 X22,20,5,19 X20,9,21,10 X8,21,9,22 X16,12,17,11 X12,16,13,15 X10,18,11,17 X2536 X4,13,1,14 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -6, 5, -9, 7, -8, 11, -2, 8, -7, 9, -3, 4, -5, 6, -4} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{2 u v^3-8 u v^2+10 u v-3 u-3 v^3+10 v^2-8 v+2}{\sqrt{u} v^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{9/2}-4 q^{7/2}+7 q^{5/2}-10 q^{3/2}+13 \sqrt{q}-\frac{15}{\sqrt{q}}+\frac{14}{q^{3/2}}-\frac{12}{q^{5/2}}+\frac{8}{q^{7/2}}-\frac{5}{q^{9/2}}+\frac{2}{q^{11/2}}-\frac{1}{q^{13/2}}} (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^7 z^{-1} -3 a^5 z-2 a^5 z^{-1} +3 a^3 z^3+z^3 a^{-3} +3 a^3 z+2 a^3 z^{-1} -a z^5-z^5 a^{-1} -z^3 a^{-1} -a z-a z^{-1} -z a^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^7 z^5-3 a^7 z^3+3 a^7 z-a^7 z^{-1} +2 a^6 z^6-4 a^6 z^4+2 a^6 z^2+2 a^5 z^7+a^5 z^5-9 a^5 z^3+8 a^5 z-2 a^5 z^{-1} +2 a^4 z^8+2 a^4 z^6+z^6 a^{-4} -7 a^4 z^4-2 z^4 a^{-4} +4 a^4 z^2-a^4+2 a^3 z^9-a^3 z^7+4 z^7 a^{-3} +6 a^3 z^5-11 z^5 a^{-3} -13 a^3 z^3+5 z^3 a^{-3} +9 a^3 z-2 a^3 z^{-1} +a^2 z^{10}+3 a^2 z^8+6 z^8 a^{-2} -7 a^2 z^6-18 z^6 a^{-2} +8 a^2 z^4+13 z^4 a^{-2} -3 a^2 z^2-2 z^2 a^{-2} +6 a z^9+4 z^9 a^{-1} -14 a z^7-7 z^7 a^{-1} +14 a z^5-3 z^5 a^{-1} -6 a z^3+6 z^3 a^{-1} +3 a z-z a^{-1} -a z^{-1} +z^{10}+7 z^8-26 z^6+26 z^4-7 z^2} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



