L11n61
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n61's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X14,8,15,7 X18,11,19,12 X19,5,20,22 X15,21,16,20 X21,17,22,16 X12,17,13,18 X8,14,9,13 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -9, 11, -2, 4, -8, 9, -3, -6, 7, 8, -4, -5, 6, -7, 5} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(2)^5+t(1) t(2)^4-3 t(2)^4-2 t(1) t(2)^3+2 t(2)^3+2 t(1) t(2)^2-2 t(2)^2-3 t(1) t(2)+t(2)+t(1)}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -2 q^{5/2}+4 q^{3/2}-5 \sqrt{q}+\frac{6}{\sqrt{q}}-\frac{6}{q^{3/2}}+\frac{5}{q^{5/2}}-\frac{5}{q^{7/2}}+\frac{2}{q^{9/2}}-\frac{1}{q^{11/2}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 z+2 a^5 z^{-1} -3 a^3 z^3-8 a^3 z-4 a^3 z^{-1} +2 a z^5+8 a z^3-2 z^3 a^{-1} +9 a z+3 a z^{-1} -4 z a^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^5 z^7-5 a^5 z^5+9 a^5 z^3-7 a^5 z+2 a^5 z^{-1} +2 a^4 z^8-8 a^4 z^6+7 a^4 z^4+a^4 z^2-2 a^4+a^3 z^9+a^3 z^7-19 a^3 z^5+29 a^3 z^3-16 a^3 z+z a^{-3} +4 a^3 z^{-1} +5 a^2 z^8-19 a^2 z^6+15 a^2 z^4+z^4 a^{-2} +a^2 z^2+z^2 a^{-2} -3 a^2- a^{-2} +a z^9+2 a z^7+2 z^7 a^{-1} -21 a z^5-7 z^5 a^{-1} +28 a z^3+8 z^3 a^{-1} -13 a z-3 z a^{-1} +3 a z^{-1} + a^{-1} z^{-1} +3 z^8-11 z^6+9 z^4+z^2-3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



