L10a1
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a1's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X4,15,1,16 X10,6,11,5 X8493 X18,11,19,12 X20,17,5,18 X12,19,13,20 X16,10,17,9 X2,14,3,13 |
| Gauss code | {1, -10, 5, -3}, {4, -1, 2, -5, 9, -4, 6, -8, 10, -2, 3, -9, 7, -6, 8, -7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u-1) (v-1) \left(v^4-3 v^3+5 v^2-3 v+1\right)}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{9}{q^{9/2}}-q^{7/2}+\frac{13}{q^{7/2}}+4 q^{5/2}-\frac{17}{q^{5/2}}-8 q^{3/2}+\frac{17}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{5}{q^{11/2}}+12 \sqrt{q}-\frac{17}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a z^7-2 a^3 z^5+4 a z^5-z^5 a^{-1} +a^5 z^3-4 a^3 z^3+6 a z^3-2 z^3 a^{-1} +a z-z a^{-1} -a^5 z^{-1} +3 a^3 z^{-1} -2 a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -2 a^3 z^9-2 a z^9-7 a^4 z^8-13 a^2 z^8-6 z^8-9 a^5 z^7-17 a^3 z^7-15 a z^7-7 z^7 a^{-1} -5 a^6 z^6+3 a^4 z^6+15 a^2 z^6-4 z^6 a^{-2} +3 z^6-a^7 z^5+15 a^5 z^5+40 a^3 z^5+37 a z^5+12 z^5 a^{-1} -z^5 a^{-3} +6 a^6 z^4+10 a^4 z^4+5 a^2 z^4+6 z^4 a^{-2} +7 z^4-6 a^5 z^3-23 a^3 z^3-26 a z^3-8 z^3 a^{-1} +z^3 a^{-3} -2 a^4 z^2-5 a^2 z^2-2 z^2 a^{-2} -5 z^2+a^3 z+3 a z+2 z a^{-1} -a^6-3 a^4-3 a^2+a^5 z^{-1} +3 a^3 z^{-1} +2 a z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



