L11n10
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n10's Link Presentations]
| Planar diagram presentation | X6172 X16,7,17,8 X4,17,1,18 X5,10,6,11 X3849 X13,22,14,5 X11,20,12,21 X21,12,22,13 X19,14,20,15 X9,18,10,19 X15,2,16,3 |
| Gauss code | {1, 11, -5, -3}, {-4, -1, 2, 5, -10, 4, -7, 8, -6, 9, -11, -2, 3, 10, -9, 7, -8, 6} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 t(1) t(2)^5-2 t(1) t(2)^4+2 t(1) t(2)^3-t(2)^3-t(1) t(2)^2+2 t(2)^2-2 t(2)+2}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{q^{7/2}}+\frac{1}{q^{9/2}}-\frac{3}{q^{11/2}}+\frac{3}{q^{13/2}}-\frac{5}{q^{15/2}}+\frac{4}{q^{17/2}}-\frac{4}{q^{19/2}}+\frac{4}{q^{21/2}}-\frac{2}{q^{23/2}}+\frac{1}{q^{25/2}} }[/math] (db) |
| Signature | -7 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^{13} (-z)-a^{13} z^{-1} +a^{11} z^5+5 a^{11} z^3+6 a^{11} z+a^{11} z^{-1} -a^9 z^7-5 a^9 z^5-6 a^9 z^3+2 a^9 z^{-1} -a^7 z^7-6 a^7 z^5-11 a^7 z^3-7 a^7 z-2 a^7 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{16} z^2-a^{16}+2 a^{15} z^3-a^{15} z+a^{14} z^6-2 a^{14} z^4+3 a^{14} z^2+2 a^{13} z^7-7 a^{13} z^5+8 a^{13} z^3-a^{13} z-a^{13} z^{-1} +2 a^{12} z^8-8 a^{12} z^6+11 a^{12} z^4-8 a^{12} z^2+3 a^{12}+a^{11} z^9-3 a^{11} z^7+2 a^{11} z^5-3 a^{11} z^3+2 a^{11} z-a^{11} z^{-1} +3 a^{10} z^8-13 a^{10} z^6+15 a^{10} z^4-6 a^{10} z^2+a^9 z^9-4 a^9 z^7+3 a^9 z^5+2 a^9 z^3-5 a^9 z+2 a^9 z^{-1} +a^8 z^8-4 a^8 z^6+2 a^8 z^4+4 a^8 z^2-3 a^8+a^7 z^7-6 a^7 z^5+11 a^7 z^3-7 a^7 z+2 a^7 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



