L10n42

From Knot Atlas
Revision as of 18:21, 2 September 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L10n41.gif

L10n41

L10n43.gif

L10n43

L10n42.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n42 at Knotilus!


Link Presentations

[edit Notes on L10n42's Link Presentations]

Planar diagram presentation X8192 X10,4,11,3 X20,10,7,9 X2738 X15,5,16,4 X5,13,6,12 X16,12,17,11 X6,18,1,17 X19,15,20,14 X13,19,14,18
Gauss code {1, -4, 2, 5, -6, -8}, {4, -1, 3, -2, 7, 6, -10, 9, -5, -7, 8, 10, -9, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n42 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{u^2 v^4-u^2 v^3-u v^4+u v^2-u-v+1}{u v^2}} (db)
Jones polynomial (db)
Signature 5 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^8 a^{-4} -z^8 a^{-6} -z^7 a^{-3} -3 z^7 a^{-5} -2 z^7 a^{-7} +5 z^6 a^{-4} +4 z^6 a^{-6} -z^6 a^{-8} +6 z^5 a^{-3} +17 z^5 a^{-5} +11 z^5 a^{-7} -5 z^4 a^{-4} +5 z^4 a^{-8} -11 z^3 a^{-3} -27 z^3 a^{-5} -16 z^3 a^{-7} -2 z^2 a^{-4} -7 z^2 a^{-6} -5 z^2 a^{-8} +8 z a^{-3} +15 z a^{-5} +8 z a^{-7} +z a^{-9} +3 a^{-4} +3 a^{-6} + a^{-8} -2 a^{-3} z^{-1} -3 a^{-5} z^{-1} - a^{-7} z^{-1} } (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over ).   
\ r
  \  
j \
-2-1012345χ
16       1-1
14      110
12     11 0
10    111 1
8   12   1
6  111   1
4 12     1
2        0
01       1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=4}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=4}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n41.gif

L10n41

L10n43.gif

L10n43