L10a43
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a43's Link Presentations]
| Planar diagram presentation | X6172 X2,9,3,10 X12,3,13,4 X20,12,5,11 X18,6,19,5 X10,20,11,19 X4,17,1,18 X16,14,17,13 X14,8,15,7 X8,16,9,15 |
| Gauss code | {1, -2, 3, -7}, {5, -1, 9, -10, 2, -6, 4, -3, 8, -9, 10, -8, 7, -5, 6, -4} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u v^5-4 u v^4+8 u v^3-8 u v^2+4 u v+4 v^4-8 v^3+8 v^2-4 v+1}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -9 q^{9/2}+13 q^{7/2}-\frac{1}{q^{7/2}}-16 q^{5/2}+\frac{3}{q^{5/2}}+17 q^{3/2}-\frac{8}{q^{3/2}}-q^{13/2}+5 q^{11/2}-16 \sqrt{q}+\frac{11}{\sqrt{q}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^7 a^{-1} +a z^5-5 z^5 a^{-1} +2 z^5 a^{-3} +3 a z^3-12 z^3 a^{-1} +5 z^3 a^{-3} -z^3 a^{-5} +5 a z-12 z a^{-1} +5 z a^{-3} +3 a z^{-1} -5 a^{-1} z^{-1} +2 a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^{-7} +5 z^6 a^{-6} -6 z^4 a^{-6} + a^{-6} +9 z^7 a^{-5} -15 z^5 a^{-5} +5 z^3 a^{-5} +7 z^8 a^{-4} -4 z^6 a^{-4} -9 z^4 a^{-4} +4 z^2 a^{-4} +2 z^9 a^{-3} +15 z^7 a^{-3} +a^3 z^5-34 z^5 a^{-3} -2 a^3 z^3+18 z^3 a^{-3} +a^3 z-5 z a^{-3} +2 a^{-3} z^{-1} +12 z^8 a^{-2} +3 a^2 z^6-13 z^6 a^{-2} -4 a^2 z^4-10 z^4 a^{-2} +a^2 z^2+17 z^2 a^{-2} -5 a^{-2} +2 z^9 a^{-1} +6 a z^7+12 z^7 a^{-1} -12 a z^5-31 z^5 a^{-1} +14 a z^3+29 z^3 a^{-1} -10 a z-16 z a^{-1} +3 a z^{-1} +5 a^{-1} z^{-1} +5 z^8-z^6-11 z^4+14 z^2-5 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



