L10n56
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n56's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X18,11,19,12 X20,5,9,6 X7,15,8,14 X12,4,13,3 X13,16,14,17 X15,7,16,6 X8,9,1,10 X4,19,5,20 X2,18,3,17 |
| Gauss code | {1, -10, 5, -9, 3, 7, -4, -8}, {8, -1, 2, -5, -6, 4, -7, 6, 10, -2, 9, -3} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u-1) (u+1)^2 (v-1)}{u^{3/2} \sqrt{v}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{5/2}+q^{3/2}-\sqrt{q}-\frac{1}{q^{5/2}}-\frac{1}{q^{9/2}}+\frac{1}{q^{11/2}} }[/math] (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 (-z)-a^3 z+a z^5+5 a z^3-z^3 a^{-1} +5 a z+a z^{-1} -3 z a^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a^2 z^8-z^8-a^3 z^7-2 a z^7-z^7 a^{-1} +6 a^2 z^6+6 z^6-a^5 z^5+6 a^3 z^5+13 a z^5+6 z^5 a^{-1} -a^6 z^4-8 a^2 z^4-9 z^4+4 a^5 z^3-8 a^3 z^3-22 a z^3-10 z^3 a^{-1} +3 a^6 z^2+a^4 z^2+a^2 z^2+3 z^2-2 a^5 z+2 a^3 z+10 a z+6 z a^{-1} +1-a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



