L11a67
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a67's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X16,8,17,7 X22,18,5,17 X14,9,15,10 X10,20,11,19 X8,21,9,22 X18,14,19,13 X20,15,21,16 X2536 X4,11,1,12 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -7, 5, -6, 11, -2, 8, -5, 9, -3, 4, -8, 6, -9, 7, -4} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(1) t(2)^5-2 t(2)^5-5 t(1) t(2)^4+9 t(2)^4+12 t(1) t(2)^3-16 t(2)^3-16 t(1) t(2)^2+12 t(2)^2+9 t(1) t(2)-5 t(2)-2 t(1)+1}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{18}{q^{9/2}}-q^{7/2}+\frac{24}{q^{7/2}}+5 q^{5/2}-\frac{29}{q^{5/2}}-13 q^{3/2}+\frac{30}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{4}{q^{13/2}}+\frac{9}{q^{11/2}}+20 \sqrt{q}-\frac{26}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^7+3 z^3 a^5+3 z a^5+2 a^5 z^{-1} -3 z^5 a^3-6 z^3 a^3-7 z a^3-4 a^3 z^{-1} +z^7 a+3 z^5 a+6 z^3 a+5 z a+3 a z^{-1} -z^5 a^{-1} -z^3 a^{-1} -2 z a^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -3 a^4 z^{10}-3 a^2 z^{10}-7 a^5 z^9-19 a^3 z^9-12 a z^9-7 a^6 z^8-18 a^4 z^8-29 a^2 z^8-18 z^8-4 a^7 z^7+2 a^5 z^7+20 a^3 z^7+a z^7-13 z^7 a^{-1} -a^8 z^6+12 a^6 z^6+50 a^4 z^6+70 a^2 z^6-5 z^6 a^{-2} +28 z^6+9 a^7 z^5+22 a^5 z^5+27 a^3 z^5+31 a z^5+16 z^5 a^{-1} -z^5 a^{-3} +2 a^8 z^4-6 a^6 z^4-37 a^4 z^4-45 a^2 z^4+2 z^4 a^{-2} -14 z^4-8 a^7 z^3-31 a^5 z^3-45 a^3 z^3-29 a z^3-7 z^3 a^{-1} -a^8 z^2+a^6 z^2+9 a^4 z^2+11 a^2 z^2+4 z^2+3 a^7 z+16 a^5 z+24 a^3 z+15 a z+4 z a^{-1} -a^6-2 a^4-3 a^2-1-2 a^5 z^{-1} -4 a^3 z^{-1} -3 a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



