L11n238

From Knot Atlas
Revision as of 18:29, 2 September 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11n237.gif

L11n237

L11n239.gif

L11n239

L11n238.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n238 at Knotilus!


Link Presentations

[edit Notes on L11n238's Link Presentations]

Planar diagram presentation X12,1,13,2 X7,16,8,17 X5,1,6,10 X3746 X9,5,10,4 X13,18,14,19 X19,22,20,11 X15,21,16,20 X21,15,22,14 X2,11,3,12 X17,8,18,9
Gauss code {1, -10, -4, 5, -3, 4, -2, 11, -5, 3}, {10, -1, -6, 9, -8, 2, -11, 6, -7, 8, -9, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11n238 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ \frac{u^3 v^3-2 u^3 v^2-2 u^2 v^3+6 u^2 v^2-6 u^2 v+2 u^2+2 u v^3-6 u v^2+6 u v-2 u-2 v+1}{u^{3/2} v^{3/2}} }[/math] (db)
Jones polynomial [math]\displaystyle{ q^{9/2}-3 q^{7/2}+6 q^{5/2}-10 q^{3/2}+12 \sqrt{q}-\frac{13}{\sqrt{q}}+\frac{12}{q^{3/2}}-\frac{10}{q^{5/2}}+\frac{6}{q^{7/2}}-\frac{3}{q^{9/2}} }[/math] (db)
Signature -1 (db)
HOMFLY-PT polynomial [math]\displaystyle{ a z^7-a^3 z^5+5 a z^5-2 z^5 a^{-1} -4 a^3 z^3+11 a z^3-7 z^3 a^{-1} +z^3 a^{-3} +a^5 z-8 a^3 z+12 a z-9 z a^{-1} +2 z a^{-3} +2 a^5 z^{-1} -5 a^3 z^{-1} +6 a z^{-1} -4 a^{-1} z^{-1} + a^{-3} z^{-1} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ -a z^9-z^9 a^{-1} -5 a^2 z^8-3 z^8 a^{-2} -8 z^8-7 a^3 z^7-14 a z^7-10 z^7 a^{-1} -3 z^7 a^{-3} -3 a^4 z^6+5 a^2 z^6+3 z^6 a^{-2} -z^6 a^{-4} +12 z^6+17 a^3 z^5+44 a z^5+36 z^5 a^{-1} +9 z^5 a^{-3} +9 z^4 a^{-2} +3 z^4 a^{-4} +6 z^4-6 a^5 z^3-29 a^3 z^3-51 a z^3-37 z^3 a^{-1} -9 z^3 a^{-3} -a^4 z^2-3 a^2 z^2-11 z^2 a^{-2} -3 z^2 a^{-4} -10 z^2+7 a^5 z+21 a^3 z+29 a z+19 z a^{-1} +4 z a^{-3} +a^4+a^2+3 a^{-2} + a^{-4} +3-2 a^5 z^{-1} -5 a^3 z^{-1} -6 a z^{-1} -4 a^{-1} z^{-1} - a^{-3} z^{-1} }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-4-3-2-1012345χ
10         1-1
8        2 2
6       41 -3
4      62  4
2     64   -2
0    76    1
-2   67     1
-4  46      -2
-6 26       4
-814        -3
-103         3
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-2 }[/math] [math]\displaystyle{ i=0 }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n237.gif

L11n237

L11n239.gif

L11n239