L11n458
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n458's Link Presentations]
| Planar diagram presentation | X6172 X3,13,4,12 X7,21,8,20 X19,5,20,10 X13,19,14,22 X21,11,22,18 X17,15,18,14 X9,17,10,16 X15,9,16,8 X2536 X11,1,12,4 |
| Gauss code | {1, -10, -2, 11}, {-4, 3, -6, 5}, {10, -1, -3, 9, -8, 4}, {-11, 2, -5, 7, -9, 8, -7, 6} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{t(1) t(4)^2 t(3)^2-t(4)^2 t(3)^2+t(1) t(3)^2-t(1) t(2) t(3)^2-2 t(1) t(4) t(3)^2+2 t(1) t(2) t(4) t(3)^2+t(4) t(3)^2-t(1) t(4)^2 t(3)-2 t(2) t(4)^2 t(3)+2 t(4)^2 t(3)-2 t(1) t(3)+2 t(1) t(2) t(3)-t(2) t(3)+3 t(1) t(4) t(3)-3 t(1) t(2) t(4) t(3)+3 t(2) t(4) t(3)-3 t(4) t(3)+t(2) t(4)^2-t(4)^2-t(1) t(2)+t(2)+t(1) t(2) t(4)-2 t(2) t(4)+2 t(4)}{\sqrt{t(1)} \sqrt{t(2)} t(3) t(4)} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 11 q^{9/2}-11 q^{7/2}+5 q^{5/2}-3 q^{3/2}+q^{21/2}-4 q^{19/2}+7 q^{17/2}-11 q^{15/2}+12 q^{13/2}-15 q^{11/2} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^3 a^{-9} - a^{-9} z^{-3} - a^{-9} z^{-1} -z^5 a^{-7} +3 a^{-7} z^{-3} +4 z a^{-7} +6 a^{-7} z^{-1} -2 z^5 a^{-5} -6 z^3 a^{-5} -3 a^{-5} z^{-3} -10 z a^{-5} -9 a^{-5} z^{-1} +3 z^3 a^{-3} + a^{-3} z^{-3} +6 z a^{-3} +4 a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^6 a^{-12} -2 z^4 a^{-12} +z^2 a^{-12} +4 z^7 a^{-11} -11 z^5 a^{-11} +8 z^3 a^{-11} -2 z a^{-11} +5 z^8 a^{-10} -11 z^6 a^{-10} +2 z^4 a^{-10} +2 z^2 a^{-10} +2 z^9 a^{-9} +7 z^7 a^{-9} -33 z^5 a^{-9} +32 z^3 a^{-9} - a^{-9} z^{-3} -16 z a^{-9} +5 a^{-9} z^{-1} +11 z^8 a^{-8} -25 z^6 a^{-8} +9 z^4 a^{-8} +10 z^2 a^{-8} +3 a^{-8} z^{-2} -10 a^{-8} +2 z^9 a^{-7} +10 z^7 a^{-7} -41 z^5 a^{-7} +52 z^3 a^{-7} -3 a^{-7} z^{-3} -31 z a^{-7} +12 a^{-7} z^{-1} +6 z^8 a^{-6} -10 z^6 a^{-6} +2 z^4 a^{-6} +18 z^2 a^{-6} +6 a^{-6} z^{-2} -19 a^{-6} +7 z^7 a^{-5} -19 z^5 a^{-5} +34 z^3 a^{-5} -3 a^{-5} z^{-3} -27 z a^{-5} +12 a^{-5} z^{-1} +3 z^6 a^{-4} -3 z^4 a^{-4} +9 z^2 a^{-4} +3 a^{-4} z^{-2} -10 a^{-4} +6 z^3 a^{-3} - a^{-3} z^{-3} -10 z a^{-3} +5 a^{-3} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|






