L10a122
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a122's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X16,12,17,11 X18,13,19,14 X20,18,9,17 X12,19,13,20 X8,16,5,15 X14,8,15,7 X2536 X4,9,1,10 |
| Gauss code | {1, -9, 2, -10}, {9, -1, 8, -7}, {10, -2, 3, -6, 4, -8, 7, -3, 5, -4, 6, -5} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{-t(1) t(3)^3+t(1) t(2) t(3)^3-2 t(2) t(3)^3+t(3)^3+4 t(1) t(3)^2-3 t(1) t(2) t(3)^2+6 t(2) t(3)^2-3 t(3)^2-6 t(1) t(3)+3 t(1) t(2) t(3)-4 t(2) t(3)+3 t(3)+2 t(1)-t(1) t(2)+t(2)-1}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{-6} -2 q^{-5} +q^4+6 q^{-4} -4 q^3-9 q^{-3} +9 q^2+13 q^{-2} -11 q-14 q^{-1} +14 }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^6 z^{-2} +a^6-3 z^2 a^4-3 a^4 z^{-2} -5 a^4+3 z^4 a^2+7 z^2 a^2+4 a^2 z^{-2} +8 a^2-z^6-3 z^4-6 z^2-3 z^{-2} -6+z^4 a^{-2} +z^2 a^{-2} + a^{-2} z^{-2} +2 a^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^6 z^6-4 a^6 z^4+6 a^6 z^2+a^6 z^{-2} -4 a^6+2 a^5 z^7-5 a^5 z^5+3 a^5 z^3+a^5 z-a^5 z^{-1} +2 a^4 z^8+a^4 z^6-16 a^4 z^4+z^4 a^{-4} +24 a^4 z^2+3 a^4 z^{-2} -14 a^4+a^3 z^9+7 a^3 z^7-20 a^3 z^5+4 z^5 a^{-3} +12 a^3 z^3-z^3 a^{-3} +a^3 z-a^3 z^{-1} +7 a^2 z^8-2 a^2 z^6+9 z^6 a^{-2} -30 a^2 z^4-11 z^4 a^{-2} +40 a^2 z^2+6 z^2 a^{-2} +4 a^2 z^{-2} + a^{-2} z^{-2} -21 a^2-4 a^{-2} +a z^9+15 a z^7+10 z^7 a^{-1} -32 a z^5-13 z^5 a^{-1} +14 a z^3+4 z^3 a^{-1} +a z+z a^{-1} -a z^{-1} - a^{-1} z^{-1} +5 z^8+7 z^6-30 z^4+28 z^2+3 z^{-2} -14 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



