Data
:
T(10,3)/Integral Khovanov Homology
From Knot Atlas
Revision as of 22:29, 26 June 2006 by
DrorsRobot
(
talk
|
contribs
)
(
diff
)
← Older revision
|
Latest revision
(
diff
) |
Newer revision →
(
diff
)
Jump to navigation
Jump to search
dim
G
2
r
+
j
KH
Z
r
(
T
(
10
,
3
)
)
{\displaystyle \dim {\mathcal {G}}_{2r+j}\operatorname {KH} _{\mathbb {Z} }^{r}(T(10,3))}
j
=
11
{\displaystyle j=11}
j
=
13
{\displaystyle j=13}
j
=
15
{\displaystyle j=15}
j
=
17
{\displaystyle j=17}
j
=
19
{\displaystyle j=19}
r
=
0
{\displaystyle r=0}
Z
{\displaystyle {\mathbb {Z} }}
Z
{\displaystyle {\mathbb {Z} }}
r
=
1
{\displaystyle r=1}
r
=
2
{\displaystyle r=2}
Z
{\displaystyle {\mathbb {Z} }}
r
=
3
{\displaystyle r=3}
Z
2
{\displaystyle {\mathbb {Z} }_{2}}
Z
{\displaystyle {\mathbb {Z} }}
r
=
4
{\displaystyle r=4}
Z
{\displaystyle {\mathbb {Z} }}
Z
{\displaystyle {\mathbb {Z} }}
r
=
5
{\displaystyle r=5}
Z
{\displaystyle {\mathbb {Z} }}
Z
{\displaystyle {\mathbb {Z} }}
r
=
6
{\displaystyle r=6}
Z
{\displaystyle {\mathbb {Z} }}
r
=
7
{\displaystyle r=7}
Z
2
{\displaystyle {\mathbb {Z} }_{2}}
Z
{\displaystyle {\mathbb {Z} }}
r
=
8
{\displaystyle r=8}
Z
{\displaystyle {\mathbb {Z} }}
Z
{\displaystyle {\mathbb {Z} }}
r
=
9
{\displaystyle r=9}
Z
{\displaystyle {\mathbb {Z} }}
Z
{\displaystyle {\mathbb {Z} }}
r
=
10
{\displaystyle r=10}
Z
{\displaystyle {\mathbb {Z} }}
r
=
11
{\displaystyle r=11}
Z
2
{\displaystyle {\mathbb {Z} }_{2}}
Z
{\displaystyle {\mathbb {Z} }}
r
=
12
{\displaystyle r=12}
Z
{\displaystyle {\mathbb {Z} }}
Z
{\displaystyle {\mathbb {Z} }}
r
=
13
{\displaystyle r=13}
Z
{\displaystyle {\mathbb {Z} }}
Z
{\displaystyle {\mathbb {Z} }}
Navigation menu
Page actions
Data
Discussion
Read
View source
History
Page actions
Data
Discussion
More
Tools
Personal tools
Log in
Navigation
Main Page
To do list
Rolfsen Table
Hoste-Thistlethwaite Table (11 crossings)
Link Table
Torus Knots
KnotTheory` Manual
What's New?
Recent changes
Random page
Help
Search
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information