T(4,3)

From Knot Atlas
Revision as of 19:35, 26 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search


[[Image:T(7,2).{{{ext}}}|80px|link=T(7,2)]]

T(7,2)

[[Image:T(9,2).{{{ext}}}|80px|link=T(9,2)]]

T(9,2)

Visit T(4,3)'s page at Knotilus!

Visit T(4,3)'s page at the original Knot Atlas!

Knot presentations

Planar diagram presentation X5,11,6,10 X16,12,1,11 X1726 X12,8,13,7 X13,3,14,2 X8493 X9,15,10,14 X4,16,5,15
Gauss code {-3, 5, 6, -8, -1, 3, 4, -6, -7, 1, 2, -4, -5, 7, 8, -2}
Dowker-Thistlethwaite code 6 -8 10 -12 14 -16 2 -4

Polynomial invariants

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 3, 6 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(4,3)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(4,3)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3 {0, 10})

Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of T(4,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
012345χ
17     1-1
15     1-1
13   11 0
11    1 1
9  1   1
71     1
51     1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Include[ColouredJonesM.mhtml]

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 19, 2005, 13:11:25)...
In[2]:=
Crossings[TorusKnot[4, 3]]
Out[2]=   
8
In[3]:=
PD[TorusKnot[4, 3]]
Out[3]=   
PD[X[5, 11, 6, 10], X[16, 12, 1, 11], X[1, 7, 2, 6], X[12, 8, 13, 7], 
  X[13, 3, 14, 2], X[8, 4, 9, 3], X[9, 15, 10, 14], X[4, 16, 5, 15]]
In[4]:=
GaussCode[TorusKnot[4, 3]]
Out[4]=   
GaussCode[-3, 5, 6, -8, -1, 3, 4, -6, -7, 1, 2, -4, -5, 7, 8, -2]
In[5]:=
BR[TorusKnot[4, 3]]
Out[5]=   
BR[3, {1, 2, 1, 2, 1, 2, 1, 2}]
In[6]:=
alex = Alexander[TorusKnot[4, 3]][t]
Out[6]=   
     -3    -2    2    3
1 + t   - t   - t  + t
In[7]:=
Conway[TorusKnot[4, 3]][z]
Out[7]=   
       2      4    6
1 + 5 z  + 5 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[8, 19]}
In[9]:=
{KnotDet[TorusKnot[4, 3]], KnotSignature[TorusKnot[4, 3]]}
Out[9]=   
{3, 6}
In[10]:=
J=Jones[TorusKnot[4, 3]][q]
Out[10]=   
 3    5    8
q  + q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[8, 19]}
In[12]:=
A2Invariant[TorusKnot[4, 3]][q]
Out[12]=   
 10    12      14      16      18    22      24      26    28    32
q   + q   + 2 q   + 2 q   + 2 q   - q   - 2 q   - 2 q   - q   + q
In[13]:=
Kauffman[TorusKnot[4, 3]][a, z]
Out[13]=   
                                  2       2      3      3      4
 -10   5    5    5 z   5 z   10 z    10 z    5 z    5 z    6 z

-a - -- - -- + --- + --- + ----- + ----- - ---- - ---- - ---- -

        8    6    9     7      8       6       9      7      8
       a    a    a     a      a       a       a      a      a

    4    5    5    6    6
 6 z    z    z    z    z
 ---- + -- + -- + -- + --
   6     9    7    8    6
a a a a a
In[14]:=
{Vassiliev[2][TorusKnot[4, 3]], Vassiliev[3][TorusKnot[4, 3]]}
Out[14]=   
{0, 10}
In[15]:=
Kh[TorusKnot[4, 3]][q, t]
Out[15]=   
 5    7    9  2    13  3    11  4    13  4    15  5    17  5
q  + q  + q  t  + q   t  + q   t  + q   t  + q   t  + q   t