L10a103

From Knot Atlas
Jump to: navigation, search

L10a102.gif

L10a102

L10a104.gif

L10a104

Contents

L10a103.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a103 at Knotilus!


Link Presentations

[edit Notes on L10a103's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,4,13,3 X20,12,9,11 X2,9,3,10 X4,17,5,18 X18,5,19,6 X6,14,7,13 X14,8,15,7 X8,16,1,15 X16,19,17,20
Gauss code {1, -4, 2, -5, 6, -7, 8, -9}, {4, -1, 3, -2, 7, -8, 9, -10, 5, -6, 10, -3}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a103 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1) (t(2) t(1)-t(1)+1) (t(1) t(2)-t(2)+1)}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial -3 q^{9/2}+\frac{1}{q^{9/2}}+6 q^{7/2}-\frac{3}{q^{7/2}}-10 q^{5/2}+\frac{5}{q^{5/2}}+11 q^{3/2}-\frac{9}{q^{3/2}}+q^{11/2}-12 \sqrt{q}+\frac{11}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^7 a^{-1} +2 a z^5-5 z^5 a^{-1} +z^5 a^{-3} -a^3 z^3+7 a z^3-10 z^3 a^{-1} +3 z^3 a^{-3} -2 a^3 z+7 a z-8 z a^{-1} +3 z a^{-3} +a z^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial -a z^9-z^9 a^{-1} -3 a^2 z^8-4 z^8 a^{-2} -7 z^8-3 a^3 z^7-7 a z^7-10 z^7 a^{-1} -6 z^7 a^{-3} -a^4 z^6+6 a^2 z^6+z^6 a^{-2} -5 z^6 a^{-4} +13 z^6+10 a^3 z^5+27 a z^5+28 z^5 a^{-1} +8 z^5 a^{-3} -3 z^5 a^{-5} +3 a^4 z^4+5 z^4 a^{-2} +5 z^4 a^{-4} -z^4 a^{-6} -4 z^4-10 a^3 z^3-27 a z^3-26 z^3 a^{-1} -6 z^3 a^{-3} +3 z^3 a^{-5} -2 a^4 z^2-2 a^2 z^2-3 z^2 a^{-2} -2 z^2 a^{-4} +z^2 a^{-6} +3 a^3 z+10 a z+10 z a^{-1} +2 z a^{-3} -z a^{-5} +1-a z^{-1} - a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-1012345χ
12          1-1
10         2 2
8        41 -3
6       62  4
4      54   -1
2     76    1
0    67     1
-2   35      -2
-4  26       4
-6 13        -2
-8 2         2
-101          -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a102.gif

L10a102

L10a104.gif

L10a104