L10a105

From Knot Atlas
Jump to: navigation, search

L10a104.gif

L10a104

L10a106.gif

L10a106

Contents

L10a105.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a105 at Knotilus!


Link Presentations

[edit Notes on L10a105's Link Presentations]

Planar diagram presentation X10,1,11,2 X2,11,3,12 X12,3,13,4 X16,10,17,9 X6,13,7,14 X14,7,15,8 X8,15,1,16 X20,18,9,17 X4,19,5,20 X18,5,19,6
Gauss code {1, -2, 3, -9, 10, -5, 6, -7}, {4, -1, 2, -3, 5, -6, 7, -4, 8, -10, 9, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a105 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(2)^3 t(1)^3-2 t(2)^2 t(1)^3-2 t(2)^3 t(1)^2+4 t(2)^2 t(1)^2-3 t(2) t(1)^2-3 t(2)^2 t(1)+4 t(2) t(1)-2 t(1)-2 t(2)+1}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial -\frac{1}{\sqrt{q}}+\frac{2}{q^{3/2}}-\frac{4}{q^{5/2}}+\frac{6}{q^{7/2}}-\frac{7}{q^{9/2}}+\frac{7}{q^{11/2}}-\frac{8}{q^{13/2}}+\frac{6}{q^{15/2}}-\frac{4}{q^{17/2}}+\frac{2}{q^{19/2}}-\frac{1}{q^{21/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial z^3 a^9+3 z a^9+a^9 z^{-1} -2 z^5 a^7-8 z^3 a^7-8 z a^7-a^7 z^{-1} +z^7 a^5+5 z^5 a^5+8 z^3 a^5+5 z a^5-z^5 a^3-4 z^3 a^3-4 z a^3 (db)
Kauffman polynomial a^{13} z^3-a^{13} z+2 a^{12} z^4-a^{12} z^2+3 a^{11} z^5-2 a^{11} z^3+a^{11} z+4 a^{10} z^6-5 a^{10} z^4+2 a^{10} z^2+5 a^9 z^7-13 a^9 z^5+14 a^9 z^3-7 a^9 z+a^9 z^{-1} +3 a^8 z^8-4 a^8 z^6-6 a^8 z^4+6 a^8 z^2-a^8+a^7 z^9+4 a^7 z^7-23 a^7 z^5+25 a^7 z^3-9 a^7 z+a^7 z^{-1} +5 a^6 z^8-17 a^6 z^6+13 a^6 z^4-2 a^6 z^2+a^5 z^9-12 a^5 z^5+16 a^5 z^3-4 a^5 z+2 a^4 z^8-9 a^4 z^6+12 a^4 z^4-5 a^4 z^2+a^3 z^7-5 a^3 z^5+8 a^3 z^3-4 a^3 z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-1012χ
0          11
-2         1 -1
-4        31 2
-6       42  -2
-8      32   1
-10     44    0
-12    43     1
-14   24      2
-16  24       -2
-18  2        2
-2012         -1
-221          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-8 {\mathbb Z} {\mathbb Z}
r=-7 {\mathbb Z}^{2}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a104.gif

L10a104

L10a106.gif

L10a106