L10a118

From Knot Atlas
Jump to: navigation, search

L10a117.gif

L10a117

L10a119.gif

L10a119

Contents

L10a118.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a118 at Knotilus!

Rich Schwartz' "25" [1]
Two interlaced pentagons.
Two hollow interlaced pentagrams.

Link Presentations

[edit Notes on L10a118's Link Presentations]

Planar diagram presentation X12,1,13,2 X2,13,3,14 X14,3,15,4 X16,5,17,6 X18,7,19,8 X20,9,11,10 X10,11,1,12 X4,15,5,16 X6,17,7,18 X8,19,9,20
Gauss code {1, -2, 3, -8, 4, -9, 5, -10, 6, -7}, {7, -1, 2, -3, 8, -4, 9, -5, 10, -6}
A Braid Representative
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif
A Morse Link Presentation L10a118 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-t(1)^4 t(2)^4-t(1)^3 t(2)^3-t(1)^2 t(2)^2-t(1) t(2)-1}{t(1)^2 t(2)^2} (db)
Jones polynomial -\frac{1}{q^{9/2}}-\frac{1}{q^{29/2}}+\frac{1}{q^{27/2}}-\frac{1}{q^{25/2}}+\frac{1}{q^{23/2}}-\frac{1}{q^{21/2}}+\frac{1}{q^{19/2}}-\frac{1}{q^{17/2}}+\frac{1}{q^{15/2}}-\frac{1}{q^{13/2}} (db)
Signature -9 (db)
HOMFLY-PT polynomial a^{11} z^7+7 a^{11} z^5+15 a^{11} z^3+10 a^{11} z+a^{11} z^{-1} -a^9 z^9-9 a^9 z^7-28 a^9 z^5-35 a^9 z^3-15 a^9 z-a^9 z^{-1} (db)
Kauffman polynomial a^{19} z+a^{18} z^2+a^{17} z^3-a^{17} z+a^{16} z^4-2 a^{16} z^2+a^{15} z^5-3 a^{15} z^3+a^{15} z+a^{14} z^6-4 a^{14} z^4+3 a^{14} z^2+a^{13} z^7-5 a^{13} z^5+6 a^{13} z^3-a^{13} z+a^{12} z^8-6 a^{12} z^6+10 a^{12} z^4-4 a^{12} z^2+a^{11} z^9-8 a^{11} z^7+22 a^{11} z^5-25 a^{11} z^3+11 a^{11} z-a^{11} z^{-1} +a^{10} z^8-7 a^{10} z^6+15 a^{10} z^4-10 a^{10} z^2+a^{10}+a^9 z^9-9 a^9 z^7+28 a^9 z^5-35 a^9 z^3+15 a^9 z-a^9 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-8          11
-10          11
-12        1  1
-14           0
-16      11   0
-18           0
-20    11     0
-22           0
-24  11       0
-26           0
-2811         0
-301          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-10 i=-8
r=-10 {\mathbb Z} {\mathbb Z}
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}_2 {\mathbb Z}
r=-1
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a117.gif

L10a117

L10a119.gif

L10a119