L10a123

From Knot Atlas
Jump to: navigation, search

L10a122.gif

L10a122

L10a124.gif

L10a124

Contents

L10a123.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a123 at Knotilus!


Link Presentations

[edit Notes on L10a123's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X14,7,15,8 X8,13,5,14 X18,12,19,11 X20,15,9,16 X16,19,17,20 X12,18,13,17 X2536 X4,9,1,10
Gauss code {1, -9, 2, -10}, {9, -1, 3, -4}, {10, -2, 5, -8, 4, -3, 6, -7, 8, -5, 7, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a123 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1) t(3)^3+t(2) t(3)^3-t(3)^3-5 t(1) t(3)^2+2 t(1) t(2) t(3)^2-5 t(2) t(3)^2+4 t(3)^2+5 t(1) t(3)-4 t(1) t(2) t(3)+5 t(2) t(3)-2 t(3)-t(1)+t(1) t(2)-t(2)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} (db)
Jones polynomial  q^{-9} -2 q^{-8} +6 q^{-7} -9 q^{-6} +12 q^{-5} -12 q^{-4} +13 q^{-3} -10 q^{-2} +q+7 q^{-1} -3 (db)
Signature -2 (db)
HOMFLY-PT polynomial a^{10} z^{-2} -3 a^8 z^{-2} -4 a^8+6 a^6 z^2+4 a^6 z^{-2} +8 a^6-3 a^4 z^4-6 a^4 z^2-3 a^4 z^{-2} -7 a^4-a^2 z^4+2 a^2 z^2+a^2 z^{-2} +3 a^2+z^2 (db)
Kauffman polynomial z^6 a^{10}-4 z^4 a^{10}+6 z^2 a^{10}+a^{10} z^{-2} -4 a^{10}+2 z^7 a^9-5 z^5 a^9+3 z^3 a^9+z a^9-a^9 z^{-1} +2 z^8 a^8+z^6 a^8-17 z^4 a^8+25 z^2 a^8+3 a^8 z^{-2} -14 a^8+z^9 a^7+6 z^7 a^7-17 z^5 a^7+7 z^3 a^7+z a^7-a^7 z^{-1} +6 z^8 a^6-z^6 a^6-29 z^4 a^6+38 z^2 a^6+4 a^6 z^{-2} -21 a^6+z^9 a^5+11 z^7 a^5-24 z^5 a^5+11 z^3 a^5+z a^5-a^5 z^{-1} +4 z^8 a^4+5 z^6 a^4-25 z^4 a^4+28 z^2 a^4+3 a^4 z^{-2} -14 a^4+7 z^7 a^3-9 z^5 a^3+5 z^3 a^3+z a^3-a^3 z^{-1} +6 z^6 a^2-8 z^4 a^2+8 z^2 a^2+a^2 z^{-2} -4 a^2+3 z^5 a-2 z^3 a+z^4-z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-1012χ
3          11
1         2 -2
-1        51 4
-3       63  -3
-5      74   3
-7     56    1
-9    77     0
-11   58      3
-13  14       -3
-15 15        4
-17 1         -1
-191          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-4 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{7}
r=-3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a122.gif

L10a122

L10a124.gif

L10a124