L10a131

From Knot Atlas
Jump to: navigation, search

L10a130.gif

L10a130

L10a132.gif

L10a132

Contents

L10a131.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a131 at Knotilus!


Link Presentations

[edit Notes on L10a131's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X20,16,11,15 X14,8,15,7 X10,12,5,11 X8,18,9,17 X18,10,19,9 X16,20,17,19 X2536 X4,14,1,13
Gauss code {1, -9, 2, -10}, {9, -1, 4, -6, 7, -5}, {5, -2, 10, -4, 3, -8, 6, -7, 8, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L10a131 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 t(1) t(3)^2 t(2)^2-2 t(3)^2 t(2)^2-t(1) t(3) t(2)^2+3 t(3) t(2)^2-t(2)^2-3 t(1) t(3)^2 t(2)+t(3)^2 t(2)-t(1) t(2)+4 t(1) t(3) t(2)-4 t(3) t(2)+3 t(2)+t(1) t(3)^2+2 t(1)-3 t(1) t(3)+t(3)-2}{\sqrt{t(1)} t(2) t(3)} (db)
Jones polynomial q^{10}-3 q^9+6 q^8-9 q^7+11 q^6-11 q^5+11 q^4-7 q^3+6 q^2-2 q+1 (db)
Signature 4 (db)
HOMFLY-PT polynomial -z^6 a^{-4} -z^6 a^{-6} +z^4 a^{-2} -3 z^4 a^{-4} -3 z^4 a^{-6} +z^4 a^{-8} +3 z^2 a^{-2} -3 z^2 a^{-4} -3 z^2 a^{-6} +2 z^2 a^{-8} +3 a^{-2} -3 a^{-4} - a^{-6} + a^{-8} + a^{-2} z^{-2} -2 a^{-4} z^{-2} + a^{-6} z^{-2} (db)
Kauffman polynomial z^9 a^{-5} +z^9 a^{-7} +2 z^8 a^{-4} +6 z^8 a^{-6} +4 z^8 a^{-8} +2 z^7 a^{-3} +4 z^7 a^{-5} +8 z^7 a^{-7} +6 z^7 a^{-9} +z^6 a^{-2} -z^6 a^{-4} -10 z^6 a^{-6} -3 z^6 a^{-8} +5 z^6 a^{-10} -5 z^5 a^{-3} -14 z^5 a^{-5} -22 z^5 a^{-7} -10 z^5 a^{-9} +3 z^5 a^{-11} -4 z^4 a^{-2} -10 z^4 a^{-4} -z^4 a^{-6} -2 z^4 a^{-8} -6 z^4 a^{-10} +z^4 a^{-12} +z^3 a^{-3} +8 z^3 a^{-5} +19 z^3 a^{-7} +9 z^3 a^{-9} -3 z^3 a^{-11} +6 z^2 a^{-2} +12 z^2 a^{-4} +6 z^2 a^{-6} +4 z^2 a^{-8} +3 z^2 a^{-10} -z^2 a^{-12} +4 z a^{-3} -6 z a^{-7} -2 z a^{-9} -4 a^{-2} -6 a^{-4} -3 a^{-6} - a^{-8} - a^{-10} -2 a^{-3} z^{-1} -2 a^{-5} z^{-1} + a^{-2} z^{-2} +2 a^{-4} z^{-2} + a^{-6} z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-1012345678χ
21          11
19         2 -2
17        41 3
15       63  -3
13      53   2
11     66    0
9    55     0
7   37      4
5  34       -1
3 15        4
1 1         -1
-11          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=7 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=8 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a130.gif

L10a130

L10a132.gif

L10a132