L10a133

From Knot Atlas
Jump to: navigation, search

L10a132.gif

L10a132

L10a134.gif

L10a134

Contents

L10a133.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a133 at Knotilus!


Link Presentations

[edit Notes on L10a133's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X14,12,15,11 X20,16,11,15 X8,18,9,17 X16,8,17,7 X18,10,19,9 X10,20,5,19 X2536 X4,14,1,13
Gauss code {1, -9, 2, -10}, {9, -1, 6, -5, 7, -8}, {3, -2, 10, -3, 4, -6, 5, -7, 8, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a133 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 t(1) t(3)^2 t(2)^2-2 t(3)^2 t(2)^2-t(1) t(3) t(2)^2+2 t(3) t(2)^2-2 t(1) t(3)^2 t(2)+t(3)^2 t(2)-t(1) t(2)+3 t(1) t(3) t(2)-3 t(3) t(2)+2 t(2)+2 t(1)-2 t(1) t(3)+t(3)-2}{\sqrt{t(1)} t(2) t(3)} (db)
Jones polynomial q^{10}-3 q^9+5 q^8-7 q^7+9 q^6-8 q^5+8 q^4-5 q^3+4 q^2-q+1 (db)
Signature 4 (db)
HOMFLY-PT polynomial -z^6 a^{-4} -z^6 a^{-6} +z^4 a^{-2} -4 z^4 a^{-4} -3 z^4 a^{-6} +z^4 a^{-8} +4 z^2 a^{-2} -6 z^2 a^{-4} -z^2 a^{-6} +2 z^2 a^{-8} +4 a^{-2} -6 a^{-4} +2 a^{-6} + a^{-2} z^{-2} -2 a^{-4} z^{-2} + a^{-6} z^{-2} (db)
Kauffman polynomial z^4 a^{-12} -z^2 a^{-12} +3 z^5 a^{-11} -4 z^3 a^{-11} +4 z^6 a^{-10} -5 z^4 a^{-10} +z^2 a^{-10} +4 z^7 a^{-9} -6 z^5 a^{-9} +4 z^3 a^{-9} +3 z^8 a^{-8} -6 z^6 a^{-8} +9 z^4 a^{-8} -5 z^2 a^{-8} + a^{-8} +z^9 a^{-7} +z^7 a^{-7} -3 z^5 a^{-7} +2 z^3 a^{-7} +4 z^8 a^{-6} -11 z^6 a^{-6} +11 z^4 a^{-6} -2 z^2 a^{-6} + a^{-6} z^{-2} -3 a^{-6} +z^9 a^{-5} -2 z^7 a^{-5} +4 z^5 a^{-5} -9 z^3 a^{-5} +6 z a^{-5} -2 a^{-5} z^{-1} +z^8 a^{-4} -9 z^4 a^{-4} +13 z^2 a^{-4} +2 a^{-4} z^{-2} -8 a^{-4} +z^7 a^{-3} -2 z^5 a^{-3} -3 z^3 a^{-3} +6 z a^{-3} -2 a^{-3} z^{-1} +z^6 a^{-2} -5 z^4 a^{-2} +8 z^2 a^{-2} + a^{-2} z^{-2} -5 a^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-1012345678χ
21          11
19         2 -2
17        31 2
15       53  -2
13      42   2
11     45    1
9    44     0
7   25      3
5  23       -1
3 14        3
1           0
-11          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{4} {\mathbb Z}^{2}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=7 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=8 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a132.gif

L10a132

L10a134.gif

L10a134