L10a148

From Knot Atlas
Jump to: navigation, search

L10a147.gif

L10a147

L10a149.gif

L10a149

Contents

L10a148.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a148 at Knotilus!


Link Presentations

[edit Notes on L10a148's Link Presentations]

Planar diagram presentation X6172 X14,4,15,3 X16,5,17,6 X12,15,5,16 X8,20,9,19 X18,8,19,7 X20,10,13,9 X10,14,11,13 X2,11,3,12 X4,18,1,17
Gauss code {1, -9, 2, -10}, {3, -1, 6, -5, 7, -8, 9, -4}, {8, -2, 4, -3, 10, -6, 5, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif
A Morse Link Presentation L10a148 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u v^3 w^3-u v^3 w^2-u v^2 w^3+3 u v^2 w^2-u v^2 w-2 u v w^2+3 u v w-u v-u w+u-v^3 w^3+v^3 w^2+v^2 w^3-3 v^2 w^2+2 v^2 w+v w^2-3 v w+v+w-1}{\sqrt{u} v^{3/2} w^{3/2}} (db)
Jones polynomial q^7-3 q^6+5 q^5-7 q^4+10 q^3+ q^{-3} -9 q^2-3 q^{-2} +10 q+5 q^{-1} -6 (db)
Signature 2 (db)
HOMFLY-PT polynomial z^6 a^{-4} +4 z^4 a^{-4} +4 z^2 a^{-4} + a^{-4} z^{-2} + a^{-4} -z^8 a^{-2} -6 z^6 a^{-2} -12 z^4 a^{-2} -9 z^2 a^{-2} -2 a^{-2} z^{-2} -3 a^{-2} +z^6+4 z^4+4 z^2+ z^{-2} +2 (db)
Kauffman polynomial 2 z^9 a^{-1} +2 z^9 a^{-3} +8 z^8 a^{-2} +4 z^8 a^{-4} +4 z^8+3 a z^7-3 z^7 a^{-1} -2 z^7 a^{-3} +4 z^7 a^{-5} +a^2 z^6-30 z^6 a^{-2} -10 z^6 a^{-4} +4 z^6 a^{-6} -15 z^6-10 a z^5-5 z^5 a^{-1} -3 z^5 a^{-3} -5 z^5 a^{-5} +3 z^5 a^{-7} -3 a^2 z^4+41 z^4 a^{-2} +15 z^4 a^{-4} -5 z^4 a^{-6} +z^4 a^{-8} +17 z^4+6 a z^3+7 z^3 a^{-1} +7 z^3 a^{-3} +2 z^3 a^{-5} -4 z^3 a^{-7} +a^2 z^2-22 z^2 a^{-2} -10 z^2 a^{-4} +z^2 a^{-6} -z^2 a^{-8} -9 z^2-3 z a^{-1} -3 z a^{-3} +5 a^{-2} +3 a^{-4} +3+2 a^{-1} z^{-1} +2 a^{-3} z^{-1} -2 a^{-2} z^{-2} - a^{-4} z^{-2} - z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-10123456χ
15          11
13         2 -2
11        31 2
9       53  -2
7      52   3
5     45    1
3    65     1
1   37      4
-1  23       -1
-3 13        2
-5 2         -2
-71          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a147.gif

L10a147

L10a149.gif

L10a149