L10a150

From Knot Atlas
Jump to: navigation, search

L10a149.gif

L10a149

L10a151.gif

L10a151

Contents

L10a150.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a150 at Knotilus!


Link Presentations

[edit Notes on L10a150's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X12,8,13,7 X18,14,19,13 X16,10,17,9 X8,16,9,15 X20,18,15,17 X14,20,5,19 X2536 X4,12,1,11
Gauss code {1, -9, 2, -10}, {6, -5, 7, -4, 8, -7}, {9, -1, 3, -6, 5, -2, 10, -3, 4, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a150 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (w-1) \left(2 v w^2-2 v w+v-w^2+2 w-2\right)}{\sqrt{u} \sqrt{v} w^{3/2}} (db)
Jones polynomial q^{10}-4 q^9+8 q^8-11 q^7+13 q^6-13 q^5+13 q^4-8 q^3+6 q^2-2 q+1 (db)
Signature 4 (db)
HOMFLY-PT polynomial -z^6 a^{-4} -z^6 a^{-6} +z^4 a^{-2} -3 z^4 a^{-4} -2 z^4 a^{-6} +z^4 a^{-8} +3 z^2 a^{-2} -4 z^2 a^{-4} +z^2 a^{-8} +3 a^{-2} -4 a^{-4} + a^{-6} + a^{-2} z^{-2} -2 a^{-4} z^{-2} + a^{-6} z^{-2} (db)
Kauffman polynomial z^4 a^{-12} +4 z^5 a^{-11} -2 z^3 a^{-11} +8 z^6 a^{-10} -9 z^4 a^{-10} +3 z^2 a^{-10} - a^{-10} +9 z^7 a^{-9} -12 z^5 a^{-9} +5 z^3 a^{-9} -z a^{-9} +5 z^8 a^{-8} +2 z^6 a^{-8} -15 z^4 a^{-8} +11 z^2 a^{-8} -3 a^{-8} +z^9 a^{-7} +13 z^7 a^{-7} -29 z^5 a^{-7} +16 z^3 a^{-7} -3 z a^{-7} +7 z^8 a^{-6} -7 z^6 a^{-6} -13 z^4 a^{-6} +18 z^2 a^{-6} + a^{-6} z^{-2} -7 a^{-6} +z^9 a^{-5} +6 z^7 a^{-5} -18 z^5 a^{-5} +11 z^3 a^{-5} +z a^{-5} -2 a^{-5} z^{-1} +2 z^8 a^{-4} -12 z^4 a^{-4} +16 z^2 a^{-4} +2 a^{-4} z^{-2} -8 a^{-4} +2 z^7 a^{-3} -5 z^5 a^{-3} +2 z^3 a^{-3} +3 z a^{-3} -2 a^{-3} z^{-1} +z^6 a^{-2} -4 z^4 a^{-2} +6 z^2 a^{-2} + a^{-2} z^{-2} -4 a^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-1012345678χ
21          11
19         3 -3
17        51 4
15       63  -3
13      75   2
11     88    0
9    55     0
7   38      5
5  35       -2
3 15        4
1 1         -1
-11          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=4 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=5 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=7 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=8 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a149.gif

L10a149

L10a151.gif

L10a151