L10a154

From Knot Atlas
Jump to: navigation, search

L10a153.gif

L10a153

L10a155.gif

L10a155

Contents

L10a154.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a154 at Knotilus!


Link Presentations

[edit Notes on L10a154's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X14,8,15,7 X20,15,17,16 X18,11,19,12 X12,17,13,18 X16,19,5,20 X8,14,9,13 X2536 X4,9,1,10
Gauss code {1, -9, 2, -10}, {6, -5, 7, -4}, {9, -1, 3, -8, 10, -2, 5, -6, 8, -3, 4, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a154 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(w-1) \left(2 u v w-3 u v+u w^2-3 u w+u+v w^2-3 v w+v-3 w^2+2 w\right)}{\sqrt{u} \sqrt{v} w^{3/2}} (db)
Jones polynomial q-3+7 q^{-1} -11 q^{-2} +13 q^{-3} -13 q^{-4} +13 q^{-5} -9 q^{-6} +7 q^{-7} -2 q^{-8} + q^{-9} (db)
Signature -2 (db)
HOMFLY-PT polynomial a^{10} z^{-2} -2 a^8 z^{-2} -4 a^8+6 a^6 z^2+a^6 z^{-2} +6 a^6-3 a^4 z^4-5 a^4 z^2-4 a^4-a^2 z^4+2 a^2 z^2+2 a^2+z^2 (db)
Kauffman polynomial z^6 a^{10}-4 z^4 a^{10}+6 z^2 a^{10}+a^{10} z^{-2} -4 a^{10}+2 z^7 a^9-4 z^5 a^9+4 z a^9-2 a^9 z^{-1} +3 z^8 a^8-5 z^6 a^8-z^4 a^8+5 z^2 a^8+2 a^8 z^{-2} -5 a^8+z^9 a^7+9 z^7 a^7-29 z^5 a^7+22 z^3 a^7-4 z a^7-2 a^7 z^{-1} +8 z^8 a^6-11 z^6 a^6-5 z^4 a^6+6 z^2 a^6+a^6 z^{-2} -2 a^6+z^9 a^5+15 z^7 a^5-41 z^5 a^5+36 z^3 a^5-12 z a^5+5 z^8 a^4+z^6 a^4-16 z^4 a^4+14 z^2 a^4-2 a^4+8 z^7 a^3-13 z^5 a^3+12 z^3 a^3-4 z a^3+6 z^6 a^2-7 z^4 a^2+6 z^2 a^2-2 a^2+3 z^5 a-2 z^3 a+z^4-z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-1012χ
3          11
1         2 -2
-1        51 4
-3       73  -4
-5      64   2
-7     77    0
-9    66     0
-11   59      4
-13  24       -2
-15  5        5
-1712         -1
-191          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-8 {\mathbb Z} {\mathbb Z}
r=-7 {\mathbb Z}^{2}
r=-6 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-4 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{6}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a153.gif

L10a153

L10a155.gif

L10a155