L10a158

From Knot Atlas
Jump to: navigation, search

L10a157.gif

L10a157

L10a159.gif

L10a159

Contents

L10a158.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a158 at Knotilus!


Link Presentations

[edit Notes on L10a158's Link Presentations]

Planar diagram presentation X8192 X14,5,15,6 X20,9,13,10 X2,20,3,19 X10,4,11,3 X18,12,19,11 X16,8,17,7 X12,18,7,17 X6,13,1,14 X4,15,5,16
Gauss code {1, -4, 5, -10, 2, -9}, {7, -1, 3, -5, 6, -8}, {9, -2, 10, -7, 8, -6, 4, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L10a158 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(w-1) \left(u^2 v^2+u^2 v w-u^2 v-u^2 w+u v^2 w-u v^2+u v w^2-3 u v w+u v-u w^2+u w-v^2 w-v w^2+v w+w^2\right)}{u v w^{3/2}} (db)
Jones polynomial -q^5+3 q^4-5 q^3+9 q^2-10 q+12-10 q^{-1} +9 q^{-2} -5 q^{-3} +3 q^{-4} - q^{-5} (db)
Signature 0 (db)
HOMFLY-PT polynomial a^4 \left(-z^2\right)-z^2 a^{-4} +a^2 z^4+z^4 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +a^2+ a^{-2} +2 z^4+z^2-2 z^{-2} -2 (db)
Kauffman polynomial 2 a z^9+2 z^9 a^{-1} +4 a^2 z^8+4 z^8 a^{-2} +8 z^8+4 a^3 z^7-a z^7-z^7 a^{-1} +4 z^7 a^{-3} +3 a^4 z^6-9 a^2 z^6-9 z^6 a^{-2} +3 z^6 a^{-4} -24 z^6+a^5 z^5-8 a^3 z^5-2 a z^5-2 z^5 a^{-1} -8 z^5 a^{-3} +z^5 a^{-5} -7 a^4 z^4+9 a^2 z^4+9 z^4 a^{-2} -7 z^4 a^{-4} +32 z^4-2 a^5 z^3+3 a^3 z^3+3 a z^3+3 z^3 a^{-1} +3 z^3 a^{-3} -2 z^3 a^{-5} +3 a^4 z^2-3 a^2 z^2-3 z^2 a^{-2} +3 z^2 a^{-4} -12 z^2+2 a z+2 z a^{-1} -2 a^2-2 a^{-2} -3-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-1012345χ
11          1-1
9         2 2
7        31 -2
5       62  4
3      54   -1
1     75    2
-1    57     2
-3   45      -1
-5  26       4
-7 13        -2
-9 2         2
-111          -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a157.gif

L10a157

L10a159.gif

L10a159