L10a31

From Knot Atlas
Jump to: navigation, search

L10a30.gif

L10a30

L10a32.gif

L10a32

Contents

L10a31.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a31 at Knotilus!


Link Presentations

[edit Notes on L10a31's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X14,8,15,7 X20,16,5,15 X16,11,17,12 X18,9,19,10 X10,17,11,18 X8,19,9,20 X2536 X4,14,1,13
Gauss code {1, -9, 2, -10}, {9, -1, 3, -8, 6, -7, 5, -2, 10, -3, 4, -5, 7, -6, 8, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a31 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) \left(2 t(2)^2-3 t(2)+2\right)}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial -q^{9/2}+3 q^{7/2}-6 q^{5/2}+7 q^{3/2}-9 \sqrt{q}+\frac{9}{\sqrt{q}}-\frac{8}{q^{3/2}}+\frac{6}{q^{5/2}}-\frac{4}{q^{7/2}}+\frac{2}{q^{9/2}}-\frac{1}{q^{11/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z a^5+a^5 z^{-1} -2 z^3 a^3-4 z a^3-2 a^3 z^{-1} +z^5 a+2 z^3 a+2 z a+a z^{-1} +z^5 a^{-1} +2 z^3 a^{-1} +2 z a^{-1} + a^{-1} z^{-1} -z^3 a^{-3} -z a^{-3} - a^{-3} z^{-1} (db)
Kauffman polynomial -a^3 z^9-a z^9-2 a^4 z^8-6 a^2 z^8-4 z^8-a^5 z^7-a^3 z^7-6 a z^7-6 z^7 a^{-1} +9 a^4 z^6+22 a^2 z^6-7 z^6 a^{-2} +6 z^6+5 a^5 z^5+18 a^3 z^5+27 a z^5+8 z^5 a^{-1} -6 z^5 a^{-3} -12 a^4 z^4-24 a^2 z^4+9 z^4 a^{-2} -3 z^4 a^{-4} -8 a^5 z^3-30 a^3 z^3-27 a z^3+2 z^3 a^{-1} +6 z^3 a^{-3} -z^3 a^{-5} +5 a^4 z^2+11 a^2 z^2-2 z^2 a^{-2} +4 z^2+5 a^5 z+15 a^3 z+10 a z-3 z a^{-1} -3 z a^{-3} -a^4-3 a^2- a^{-2} -2-a^5 z^{-1} -2 a^3 z^{-1} -a z^{-1} + a^{-1} z^{-1} + a^{-3} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-101234χ
10          11
8         2 -2
6        41 3
4       32  -1
2      64   2
0     55    0
-2    34     -1
-4   35      2
-6  13       -2
-8 13        2
-10 1         -1
-121          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a30.gif

L10a30

L10a32.gif

L10a32