L10a38

From Knot Atlas
Jump to: navigation, search

L10a37.gif

L10a37

L10a39.gif

L10a39

Contents

L10a38.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a38 at Knotilus!


Link Presentations

[edit Notes on L10a38's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X16,13,17,14 X14,9,15,10 X10,15,11,16 X20,17,5,18 X18,7,19,8 X8,19,9,20 X2536 X4,11,1,12
Gauss code {1, -9, 2, -10}, {9, -1, 7, -8, 4, -5, 10, -2, 3, -4, 5, -3, 6, -7, 8, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a38 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{\left(v^2-v+1\right) \left(3 u v^2-3 u v+u+v^3-3 v^2+3 v\right)}{\sqrt{u} v^{5/2}} (db)
Jones polynomial -\frac{8}{q^{9/2}}+\frac{3}{q^{7/2}}-\frac{1}{q^{5/2}}-\frac{1}{q^{25/2}}+\frac{3}{q^{23/2}}-\frac{6}{q^{21/2}}+\frac{11}{q^{19/2}}-\frac{13}{q^{17/2}}+\frac{14}{q^{15/2}}-\frac{14}{q^{13/2}}+\frac{10}{q^{11/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^{13} z^{-1} -4 z a^{11}-5 a^{11} z^{-1} +6 z^3 a^9+14 z a^9+8 a^9 z^{-1} -3 z^5 a^7-10 z^3 a^7-11 z a^7-4 a^7 z^{-1} -z^5 a^5-2 z^3 a^5-z a^5 (db)
Kauffman polynomial a^{15} z^5-2 a^{15} z^3+a^{15} z+3 a^{14} z^6-6 a^{14} z^4+5 a^{14} z^2-2 a^{14}+4 a^{13} z^7-4 a^{13} z^5-a^{13} z^3+a^{13} z+a^{13} z^{-1} +3 a^{12} z^8+5 a^{12} z^6-21 a^{12} z^4+22 a^{12} z^2-9 a^{12}+a^{11} z^9+11 a^{11} z^7-23 a^{11} z^5+16 a^{11} z^3-9 a^{11} z+5 a^{11} z^{-1} +7 a^{10} z^8+a^{10} z^6-29 a^{10} z^4+35 a^{10} z^2-14 a^{10}+a^9 z^9+13 a^9 z^7-32 a^9 z^5+32 a^9 z^3-22 a^9 z+8 a^9 z^{-1} +4 a^8 z^8+2 a^8 z^6-18 a^8 z^4+19 a^8 z^2-8 a^8+6 a^7 z^7-13 a^7 z^5+15 a^7 z^3-12 a^7 z+4 a^7 z^{-1} +3 a^6 z^6-4 a^6 z^4+a^6 z^2+a^5 z^5-2 a^5 z^3+a^5 z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-4          11
-6         31-2
-8        5  5
-10       53  -2
-12      95   4
-14     66    0
-16    78     -1
-18   46      2
-20  27       -5
-22 14        3
-24 2         -2
-261          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-10 {\mathbb Z}
r=-9 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-8 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-7 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-6 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-5 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{9}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a37.gif

L10a37

L10a39.gif

L10a39