L10a65

From Knot Atlas
Jump to: navigation, search

L10a64.gif

L10a64

L10a66.gif

L10a66

Contents

L10a65.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a65 at Knotilus!


Link Presentations

[edit Notes on L10a65's Link Presentations]

Planar diagram presentation X8192 X10,4,11,3 X20,10,7,9 X2738 X4,20,5,19 X14,5,15,6 X18,11,19,12 X16,13,17,14 X12,17,13,18 X6,15,1,16
Gauss code {1, -4, 2, -5, 6, -10}, {4, -1, 3, -2, 7, -9, 8, -6, 10, -8, 9, -7, 5, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a65 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 t(2)^2 t(1)^2-4 t(2) t(1)^2+2 t(1)^2-4 t(2)^2 t(1)+9 t(2) t(1)-4 t(1)+2 t(2)^2-4 t(2)+2}{t(1) t(2)} (db)
Jones polynomial -\frac{8}{q^{9/2}}+\frac{10}{q^{7/2}}+q^{5/2}-\frac{11}{q^{5/2}}-3 q^{3/2}+\frac{10}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{3}{q^{13/2}}+\frac{5}{q^{11/2}}+5 \sqrt{q}-\frac{9}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial -z a^7+2 z^3 a^5+2 z a^5-z^5 a^3-z^3 a^3+a^3 z^{-1} -z^5 a-2 z^3 a-3 z a-a z^{-1} +z^3 a^{-1} +z a^{-1} (db)
Kauffman polynomial -a^5 z^9-a^3 z^9-3 a^6 z^8-6 a^4 z^8-3 a^2 z^8-3 a^7 z^7-5 a^5 z^7-6 a^3 z^7-4 a z^7-a^8 z^6+7 a^6 z^6+12 a^4 z^6-4 z^6+10 a^7 z^5+20 a^5 z^5+14 a^3 z^5+a z^5-3 z^5 a^{-1} +3 a^8 z^4-2 a^6 z^4-6 a^4 z^4+3 a^2 z^4-z^4 a^{-2} +3 z^4-9 a^7 z^3-17 a^5 z^3-7 a^3 z^3+5 a z^3+4 z^3 a^{-1} -2 a^8 z^2-a^6 z^2+2 a^4 z^2+z^2 a^{-2} +2 a^7 z+4 a^5 z-a^3 z-5 a z-2 z a^{-1} -a^2+a^3 z^{-1} +a z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-10123χ
6          1-1
4         2 2
2        31 -2
0       62  4
-2      54   -1
-4     65    1
-6    56     1
-8   35      -2
-10  25       3
-12 13        -2
-14 2         2
-161          -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a64.gif

L10a64

L10a66.gif

L10a66