L10a8

From Knot Atlas
Jump to: navigation, search

L10a7.gif

L10a7

L10a9.gif

L10a9

Contents

L10a8.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a8 at Knotilus!


Link Presentations

[edit Notes on L10a8's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X12,8,13,7 X16,10,17,9 X20,17,5,18 X18,13,19,14 X14,19,15,20 X8,16,9,15 X2536 X4,12,1,11
Gauss code {1, -9, 2, -10}, {9, -1, 3, -8, 4, -2, 10, -3, 6, -7, 8, -4, 5, -6, 7, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a8 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1) \left(t(2)^4-2 t(2)^3+4 t(2)^2-2 t(2)+1\right)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial q^{11/2}-3 q^{9/2}+7 q^{7/2}-11 q^{5/2}+12 q^{3/2}-14 \sqrt{q}+\frac{12}{\sqrt{q}}-\frac{10}{q^{3/2}}+\frac{6}{q^{5/2}}-\frac{3}{q^{7/2}}+\frac{1}{q^{9/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^7 a^{-1} +2 a z^5-5 z^5 a^{-1} +z^5 a^{-3} -a^3 z^3+7 a z^3-11 z^3 a^{-1} +3 z^3 a^{-3} -2 a^3 z+9 a z-11 z a^{-1} +4 z a^{-3} -a^3 z^{-1} +4 a z^{-1} -4 a^{-1} z^{-1} + a^{-3} z^{-1} (db)
Kauffman polynomial -a z^9-z^9 a^{-1} -3 a^2 z^8-5 z^8 a^{-2} -8 z^8-3 a^3 z^7-10 a z^7-15 z^7 a^{-1} -8 z^7 a^{-3} -a^4 z^6+3 a^2 z^6-6 z^6 a^{-4} +10 z^6+9 a^3 z^5+35 a z^5+43 z^5 a^{-1} +14 z^5 a^{-3} -3 z^5 a^{-5} +3 a^4 z^4+9 a^2 z^4+14 z^4 a^{-2} +7 z^4 a^{-4} -z^4 a^{-6} +12 z^4-9 a^3 z^3-35 a z^3-43 z^3 a^{-1} -15 z^3 a^{-3} +2 z^3 a^{-5} -3 a^4 z^2-12 a^2 z^2-15 z^2 a^{-2} -5 z^2 a^{-4} +z^2 a^{-6} -18 z^2+4 a^3 z+17 a z+21 z a^{-1} +8 z a^{-3} +a^4+4 a^2+4 a^{-2} + a^{-4} +7-a^3 z^{-1} -4 a z^{-1} -4 a^{-1} z^{-1} - a^{-3} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-1012345χ
12          1-1
10         2 2
8        51 -4
6       62  4
4      65   -1
2     86    2
0    68     2
-2   46      -2
-4  26       4
-6 14        -3
-8 2         2
-101          -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a7.gif

L10a7

L10a9.gif

L10a9