L10a82

From Knot Atlas
Jump to: navigation, search

L10a81.gif

L10a81

L10a83.gif

L10a83

Contents

L10a82.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a82 at Knotilus!


Link Presentations

[edit Notes on L10a82's Link Presentations]

Planar diagram presentation X8192 X12,3,13,4 X20,10,7,9 X10,14,11,13 X16,6,17,5 X18,16,19,15 X14,20,15,19 X2738 X4,11,5,12 X6,18,1,17
Gauss code {1, -8, 2, -9, 5, -10}, {8, -1, 3, -4, 9, -2, 4, -7, 6, -5, 10, -6, 7, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a82 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 t(2)^2 t(1)^2-5 t(2) t(1)^2+3 t(1)^2-5 t(2)^2 t(1)+9 t(2) t(1)-5 t(1)+3 t(2)^2-5 t(2)+2}{t(1) t(2)} (db)
Jones polynomial -7 q^{9/2}+10 q^{7/2}-\frac{1}{q^{7/2}}-13 q^{5/2}+\frac{2}{q^{5/2}}+13 q^{3/2}-\frac{6}{q^{3/2}}-q^{13/2}+4 q^{11/2}-12 \sqrt{q}+\frac{9}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^3 a^{-5} +z^5 a^{-3} +z^3 a^{-3} +a^3 z+z a^{-3} +a^3 z^{-1} +z^5 a^{-1} -2 a z^3-2 a z-z a^{-1} -a z^{-1} (db)
Kauffman polynomial z^5 a^{-7} -z^3 a^{-7} +4 z^6 a^{-6} -7 z^4 a^{-6} +2 z^2 a^{-6} +6 z^7 a^{-5} -11 z^5 a^{-5} +5 z^3 a^{-5} -z a^{-5} +4 z^8 a^{-4} -11 z^4 a^{-4} +6 z^2 a^{-4} +z^9 a^{-3} +11 z^7 a^{-3} +a^3 z^5-27 z^5 a^{-3} -3 a^3 z^3+21 z^3 a^{-3} +3 a^3 z-5 z a^{-3} -a^3 z^{-1} +7 z^8 a^{-2} +2 a^2 z^6-8 z^6 a^{-2} -3 a^2 z^4+2 z^2 a^{-2} +a^2+z^9 a^{-1} +3 a z^7+8 z^7 a^{-1} -3 a z^5-19 z^5 a^{-1} -a z^3+17 z^3 a^{-1} +2 a z-5 z a^{-1} -a z^{-1} +3 z^8-2 z^6+z^4-2 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-10123456χ
14          11
12         3 -3
10        41 3
8       63  -3
6      74   3
4     66    0
2    67     -1
0   47      3
-2  25       -3
-4 15        4
-6 1         -1
-81          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a81.gif

L10a81

L10a83.gif

L10a83