L10n100

From Knot Atlas
Jump to: navigation, search

L10n99.gif

L10n99

L10n101.gif

L10n101

Contents

L10n100.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n100 at Knotilus!


Link Presentations

[edit Notes on L10n100's Link Presentations]

Planar diagram presentation X6172 X3,11,4,10 X7,15,8,14 X13,5,14,8 X11,18,12,19 X20,16,17,15 X16,20,9,19 X17,12,18,13 X2536 X9,1,10,4
Gauss code {1, -9, -2, 10}, {9, -1, -3, 4}, {-8, 5, 7, -6}, {-10, 2, -5, 8, -4, 3, 6, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n100 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) (w-1) (x-1)}{\sqrt{u} \sqrt{v} \sqrt{w} \sqrt{x}} (db)
Jones polynomial -2 q^{9/2}+3 q^{7/2}-7 q^{5/2}+4 q^{3/2}-7 \sqrt{q}+\frac{4}{\sqrt{q}}-\frac{4}{q^{3/2}}+\frac{1}{q^{5/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial - a^{-5} z^{-3} - a^{-5} z^{-1} -z^3 a^{-3} +3 a^{-3} z^{-3} +z a^{-3} +4 a^{-3} z^{-1} +z^5 a^{-1} -a z^3+2 z^3 a^{-1} +a z^{-3} -3 a^{-1} z^{-3} -z a^{-1} +2 a z^{-1} -5 a^{-1} z^{-1} (db)
Kauffman polynomial -z^7 a^{-1} -z^7 a^{-3} -5 z^6 a^{-2} -z^6 a^{-4} -4 z^6-4 a z^5-6 z^5 a^{-1} -2 z^5 a^{-3} -a^2 z^4+6 z^4 a^{-2} +5 z^4+6 a z^3+10 z^3 a^{-1} +z^3 a^{-3} -3 z^3 a^{-5} -6 z^2 a^{-2} -5 z^2 a^{-4} -z^2+z a^{-1} +5 z a^{-3} +4 z a^{-5} +11 a^{-2} +6 a^{-4} +6-3 a z^{-1} -6 a^{-1} z^{-1} -6 a^{-3} z^{-1} -3 a^{-5} z^{-1} -6 a^{-2} z^{-2} -3 a^{-4} z^{-2} -3 z^{-2} +a z^{-3} +3 a^{-1} z^{-3} +3 a^{-3} z^{-3} + a^{-5} z^{-3} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-3-2-101234χ
10       22
8      32-1
6     4  4
4     3  3
2   74   3
0  36    3
-2 11     0
-4 3      3
-61       -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2 {\mathbb Z}^{7}
r=1 {\mathbb Z}^{4}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n99.gif

L10n99

L10n101.gif

L10n101