L10n109

From Knot Atlas
Jump to: navigation, search

L10n108.gif

L10n108

L10n110.gif

L10n110

Contents

L10n109.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n109 at Knotilus!


Link Presentations

[edit Notes on L10n109's Link Presentations]

Planar diagram presentation X6172 X5,12,6,13 X3849 X2,16,3,15 X16,7,17,8 X19,11,20,14 X13,15,14,20 X9,18,10,19 X11,10,12,5 X17,1,18,4
Gauss code {1, -4, -3, 10}, {-9, 2, -7, 6}, {-2, -1, 5, 3, -8, 9}, {4, -5, -10, 8, -6, 7}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L10n109 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-t(2) t(3)^2+t(2) t(4) t(3)^2-t(4) t(3)^2+t(1) t(4)^2 t(3)-t(1) t(2) t(4)^2 t(3)+t(2) t(3)-t(1) t(4) t(3)+2 t(1) t(2) t(4) t(3)-t(2) t(4) t(3)+2 t(4) t(3)-t(3)-t(1) t(4)^2+t(1) t(4)-t(1) t(2) t(4)}{\sqrt{t(1)} \sqrt{t(2)} t(3) t(4)} (db)
Jones polynomial -2 q^{3/2}+2 \sqrt{q}-\frac{6}{\sqrt{q}}+\frac{4}{q^{3/2}}-\frac{7}{q^{5/2}}+\frac{4}{q^{7/2}}-\frac{4}{q^{9/2}}+\frac{2}{q^{11/2}}-\frac{1}{q^{13/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^5 z^3+a^5 z^{-3} +2 a^5 z+2 a^5 z^{-1} -a^3 z^5-4 a^3 z^3-3 a^3 z^{-3} -8 a^3 z-7 a^3 z^{-1} +3 a z^3+3 a z^{-3} - a^{-1} z^{-3} +8 a z+8 a z^{-1} -2 z a^{-1} -3 a^{-1} z^{-1} (db)
Kauffman polynomial a^7 z^5-3 a^7 z^3+a^7 z+2 a^6 z^6-5 a^6 z^4+a^6 z^2+3 a^5 z^7-11 a^5 z^5+15 a^5 z^3-a^5 z^{-3} -12 a^5 z+5 a^5 z^{-1} +a^4 z^8+a^4 z^6-11 a^4 z^4+17 a^4 z^2+3 a^4 z^{-2} -10 a^4+5 a^3 z^7-20 a^3 z^5+36 a^3 z^3-3 a^3 z^{-3} -29 a^3 z+12 a^3 z^{-1} +a^2 z^8-8 a^2 z^4+23 a^2 z^2+6 a^2 z^{-2} -19 a^2+2 a z^7-8 a z^5+21 a z^3+3 z^3 a^{-1} -3 a z^{-3} - a^{-1} z^{-3} -23 a z-7 z a^{-1} +12 a z^{-1} +5 a^{-1} z^{-1} +z^6-2 z^4+7 z^2+3 z^{-2} -10 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012χ
4        22
2       110
0      51 4
-2     35  2
-4    41   3
-6   25    3
-8  22     0
-10  2      2
-1212       -1
-141        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-6 {\mathbb Z} {\mathbb Z}
r=-5 {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{5}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n108.gif

L10n108

L10n110.gif

L10n110