L10n111

From Knot Atlas
Jump to: navigation, search

L10n110.gif

L10n110

L10n112.gif

L10n112

Contents

L10n111.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n111 at Knotilus!


Link Presentations

[edit Notes on L10n111's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X13,17,14,20 X19,11,20,16 X7,19,8,18 X15,8,16,9 X9,14,10,15 X17,5,18,10 X2536 X4,11,1,12
Gauss code {1, -9, 2, -10}, {-8, 5, -4, 3}, {9, -1, -5, 6, -7, 8}, {10, -2, -3, 7, -6, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n111 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(3) t(4)-1) (t(3) t(1)+t(4) t(1)-t(1)-t(2) t(3)-t(2) t(4)+t(2) t(3) t(4))}{\sqrt{t(1)} \sqrt{t(2)} t(3) t(4)} (db)
Jones polynomial -q^{7/2}+q^{5/2}-q^{3/2}-\frac{2}{\sqrt{q}}-\frac{2}{q^{3/2}}-\frac{1}{q^{5/2}}-\frac{2}{q^{7/2}}+\frac{1}{q^{9/2}}-\frac{1}{q^{11/2}} (db)
Signature 0 (db)
HOMFLY-PT polynomial z a^5+2 a^5 z^{-1} +a^5 z^{-3} -2 z^3 a^3-8 z a^3-7 a^3 z^{-1} -3 a^3 z^{-3} +z^5 a+6 z^3 a+10 z a+8 a z^{-1} +3 a z^{-3} -2 z a^{-1} -3 a^{-1} z^{-1} - a^{-1} z^{-3} -z a^{-3} (db)
Kauffman polynomial a^5 z^7-6 a^5 z^5+11 a^5 z^3-a^5 z^{-3} -10 a^5 z+5 a^5 z^{-1} +a^4 z^8-5 a^4 z^6+3 a^4 z^4+8 a^4 z^2+3 a^4 z^{-2} -10 a^4+3 a^3 z^7-20 a^3 z^5+z^5 a^{-3} +39 a^3 z^3-4 z^3 a^{-3} -3 a^3 z^{-3} -31 a^3 z+2 z a^{-3} +12 a^3 z^{-1} +a^2 z^8-4 a^2 z^6+z^6 a^{-2} -6 a^2 z^4-4 z^4 a^{-2} +26 a^2 z^2+2 z^2 a^{-2} +6 a^2 z^{-2} -19 a^2+3 a z^7+z^7 a^{-1} -21 a z^5-6 z^5 a^{-1} +43 a z^3+11 z^3 a^{-1} -3 a z^{-3} - a^{-1} z^{-3} -35 a z-12 z a^{-1} +12 a z^{-1} +5 a^{-1} z^{-1} +2 z^6-13 z^4+20 z^2+3 z^{-2} -10 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-101234χ
8          11
6         110
4       11  0
2      111  1
0     141   2
-2    213    4
-4   151     3
-6  113      3
-8 12        1
-10           0
-121          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0 i=2
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2} {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{3} {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-1 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n110.gif

L10n110

L10n112.gif

L10n112