L10n113

From Knot Atlas
Jump to: navigation, search

L10n112.gif

L10n112

L11a1.gif

L11a1

Contents

L10n113.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n113 at Knotilus!


Link Presentations

[edit Notes on L10n113's Link Presentations]

Planar diagram presentation X6172 X2536 X11,19,12,18 X3,11,4,10 X9,1,10,4 X7,15,8,14 X13,5,14,8 X20,15,17,16 X16,19,13,20 X17,9,18,12
Gauss code {1, -2, -4, 5}, {2, -1, -6, 7}, {-5, 4, -3, 10}, {-7, 6, 8, -9}, {-10, 3, 9, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n113 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-u v w+u v x y-u v y+u v+u w y-u x y+v w-v x-w x y+w x-w+x y}{\sqrt{u} \sqrt{v} \sqrt{w} \sqrt{x} \sqrt{y}} (db)
Jones polynomial q^6-q^5+5 q^4-q^3+ q^{-3} +5 q^2+ q^{-1} +5 (db)
Signature 0 (db)
HOMFLY-PT polynomial  a^{-6} z^{-4} +2 a^{-6} z^{-2} + a^{-6} -4 a^{-4} z^{-4} -3 z^2 a^{-4} -9 a^{-4} z^{-2} -8 a^{-4} +2 z^4 a^{-2} +a^2 z^{-4} +6 a^{-2} z^{-4} +a^2 z^2+9 z^2 a^{-2} +3 a^2 z^{-2} +15 a^{-2} z^{-2} +3 a^2+16 a^{-2} -z^4-4 z^{-4} -7 z^2-11 z^{-2} -12 (db)
Kauffman polynomial z^6 a^{-6} -5 z^4 a^{-6} - a^{-6} z^{-4} +10 z^2 a^{-6} +5 a^{-6} z^{-2} -10 a^{-6} +z^7 a^{-5} -z^5 a^{-5} -10 z^3 a^{-5} +4 a^{-5} z^{-3} +20 z a^{-5} -15 a^{-5} z^{-1} +6 z^6 a^{-4} -25 z^4 a^{-4} -4 a^{-4} z^{-4} +30 z^2 a^{-4} +14 a^{-4} z^{-2} -25 a^{-4} +z^7 a^{-3} +3 z^5 a^{-3} -30 z^3 a^{-3} +12 a^{-3} z^{-3} +55 z a^{-3} -41 a^{-3} z^{-1} +a^2 z^6+5 z^6 a^{-2} -6 a^2 z^4-25 z^4 a^{-2} -a^2 z^{-4} -6 a^{-2} z^{-4} +10 a^2 z^2+40 z^2 a^{-2} +5 a^2 z^{-2} +18 a^{-2} z^{-2} -10 a^2-31 a^{-2} +a z^5+5 z^5 a^{-1} -10 a z^3-30 z^3 a^{-1} +4 a z^{-3} +12 a^{-1} z^{-3} +20 a z+55 z a^{-1} -15 a z^{-1} -41 a^{-1} z^{-1} +z^6-11 z^4-4 z^{-4} +30 z^2+14 z^{-2} -25 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-10123456χ
13          11
11           0
9        51 4
7       15  4
5      4    4
3    4 1    5
1   1104     5
-1    6      6
-3  1        1
-51          1
-71          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1 i=3
r=-4 {\mathbb Z} {\mathbb Z}
r=-3
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{6} {\mathbb Z}^{10} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{4}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n112.gif

L10n112

L11a1.gif

L11a1