L10n20

From Knot Atlas
Jump to: navigation, search

L10n19.gif

L10n19

L10n21.gif

L10n21

Contents

L10n20.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n20 at Knotilus!


Link Presentations

[edit Notes on L10n20's Link Presentations]

Planar diagram presentation X6172 X18,7,19,8 X4,19,1,20 X11,14,12,15 X8493 X5,13,6,12 X13,5,14,20 X9,16,10,17 X15,10,16,11 X2,18,3,17
Gauss code {1, -10, 5, -3}, {-6, -1, 2, -5, -8, 9, -4, 6, -7, 4, -9, 8, 10, -2, 3, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n20 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1) \left(t(2)^2-3 t(2)+1\right)}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial -\frac{2}{q^{9/2}}-q^{7/2}+\frac{4}{q^{7/2}}+2 q^{5/2}-\frac{6}{q^{5/2}}-5 q^{3/2}+\frac{7}{q^{3/2}}+6 \sqrt{q}-\frac{7}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^5 z^{-1} +z^3 a^3-z a^3-2 a^3 z^{-1} -z^5 a-2 z^3 a-z a+a z^{-1} +2 z^3 a^{-1} +3 z a^{-1} + a^{-1} z^{-1} -z a^{-3} - a^{-3} z^{-1} (db)
Kauffman polynomial -a^2 z^8-z^8-2 a^3 z^7-4 a z^7-2 z^7 a^{-1} -a^4 z^6-a^2 z^6-2 z^6 a^{-2} -2 z^6+3 a^3 z^5+5 a z^5+z^5 a^{-1} -z^5 a^{-3} -2 a^4 z^4-2 a^2 z^4+4 z^4 a^{-2} +4 z^4-3 a^5 z^3-9 a^3 z^3-3 a z^3+6 z^3 a^{-1} +3 z^3 a^{-3} +2 a^4 z^2+6 a^2 z^2-z^2 a^{-2} +3 z^2+3 a^5 z+9 a^3 z+4 a z-5 z a^{-1} -3 z a^{-3} -a^4-3 a^2- a^{-2} -2-a^5 z^{-1} -2 a^3 z^{-1} -a z^{-1} + a^{-1} z^{-1} + a^{-3} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234χ
8        11
6       1 -1
4      41 3
2     21  -1
0    54   1
-2   44    0
-4  23     -1
-6 24      2
-8 2       -2
-102        2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-4 {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n19.gif

L10n19

L10n21.gif

L10n21