L10n22

From Knot Atlas
Jump to: navigation, search

L10n21.gif

L10n21

L10n23.gif

L10n23

Contents

L10n22.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n22 at Knotilus!


Link Presentations

[edit Notes on L10n22's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X12,8,13,7 X9,16,10,17 X20,17,5,18 X18,13,19,14 X14,19,15,20 X15,8,16,9 X2536 X4,12,1,11
Gauss code {1, -9, 2, -10}, {9, -1, 3, 8, -4, -2, 10, -3, 6, -7, -8, 4, 5, -6, 7, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n22 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1)^3}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial \sqrt{q}-\frac{4}{\sqrt{q}}+\frac{4}{q^{3/2}}-\frac{6}{q^{5/2}}+\frac{5}{q^{7/2}}-\frac{5}{q^{9/2}}+\frac{4}{q^{11/2}}-\frac{2}{q^{13/2}}+\frac{1}{q^{15/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^7 (-z)-a^7 z^{-1} +2 a^5 z^3+4 a^5 z+2 a^5 z^{-1} -a^3 z^5-3 a^3 z^3-3 a^3 z+a z^3-a z^{-1} (db)
Kauffman polynomial a^8 z^6-4 a^8 z^4+5 a^8 z^2-2 a^8+2 a^7 z^7-7 a^7 z^5+6 a^7 z^3-2 a^7 z+a^7 z^{-1} +a^6 z^8+a^6 z^6-13 a^6 z^4+14 a^6 z^2-5 a^6+5 a^5 z^7-16 a^5 z^5+14 a^5 z^3-7 a^5 z+2 a^5 z^{-1} +a^4 z^8+2 a^4 z^6-12 a^4 z^4+11 a^4 z^2-3 a^4+3 a^3 z^7-9 a^3 z^5+12 a^3 z^3-6 a^3 z+2 a^2 z^6-3 a^2 z^4+3 a^2 z^2+a^2+4 a z^3-a z-a z^{-1} +z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-101χ
2        1-1
0       3 3
-2      33 0
-4     31  2
-6    23   1
-8   33    0
-10  12     1
-12 13      -2
-14 1       1
-161        -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n21.gif

L10n21

L10n23.gif

L10n23