L10n31

From Knot Atlas
Jump to: navigation, search

L10n30.gif

L10n30

L10n32.gif

L10n32

Contents

L10n31.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n31 at Knotilus!


Link Presentations

[edit Notes on L10n31's Link Presentations]

Planar diagram presentation X6172 X18,7,19,8 X4,19,1,20 X11,14,12,15 X3,10,4,11 X5,13,6,12 X13,5,14,20 X16,9,17,10 X15,2,16,3 X8,17,9,18
Gauss code {1, 9, -5, -3}, {-6, -1, 2, -10, 8, 5, -4, 6, -7, 4, -9, -8, 10, -2, 3, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n31 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(v-2) (2 v-1) (u v+1)}{\sqrt{u} v^{3/2}} (db)
Jones polynomial \frac{7}{q^{9/2}}-\frac{6}{q^{7/2}}+\frac{5}{q^{5/2}}-\frac{5}{q^{3/2}}-\frac{2}{q^{15/2}}+\frac{3}{q^{13/2}}-\frac{5}{q^{11/2}}-\sqrt{q}+\frac{2}{\sqrt{q}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^9 z^{-1} -z^3 a^7-3 z a^7-2 a^7 z^{-1} +z^5 a^5+3 z^3 a^5+3 z a^5+a^5 z^{-1} +z^5 a^3+2 z^3 a^3+a^3 z^{-1} -z^3 a-2 z a-a z^{-1} (db)
Kauffman polynomial 3 a^9 z^3-5 a^9 z+a^9 z^{-1} +a^8 z^6+a^8+2 a^7 z^7-6 a^7 z^5+15 a^7 z^3-12 a^7 z+2 a^7 z^{-1} +a^6 z^8+3 a^6+4 a^5 z^7-9 a^5 z^5+11 a^5 z^3-8 a^5 z+a^5 z^{-1} +a^4 z^8+a^4 z^6-4 a^4 z^4+2 a^4+2 a^3 z^7-2 a^3 z^5-4 a^3 z^3+2 a^3 z-a^3 z^{-1} +2 a^2 z^6-4 a^2 z^4+a^2+a z^5-3 a z^3+3 a z-a z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012χ
2        11
0       1 -1
-2      41 3
-4     22  0
-6    43   1
-8   32    -1
-10  24     -2
-12 24      2
-14 1       -1
-162        2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-6 {\mathbb Z}^{2}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n30.gif

L10n30

L10n32.gif

L10n32