L10n40

From Knot Atlas
Jump to: navigation, search

L10n39.gif

L10n39

L10n41.gif

L10n41

Contents

L10n40.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n40 at Knotilus!


Link Presentations

[edit Notes on L10n40's Link Presentations]

Planar diagram presentation X8192 X10,4,11,3 X20,10,7,9 X2738 X15,5,16,4 X5,13,6,12 X11,16,12,17 X6,18,1,17 X14,19,15,20 X18,13,19,14
Gauss code {1, -4, 2, 5, -6, -8}, {4, -1, 3, -2, -7, 6, 10, -9, -5, 7, 8, -10, 9, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n40 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1) t(2)^4-t(2)^4-2 t(1) t(2)^3+t(2)^3+t(1) t(2)^2+t(1)^2 t(2)-2 t(1) t(2)-t(1)^2+t(1)}{t(1) t(2)^2} (db)
Jones polynomial q^{9/2}-2 q^{7/2}+\frac{1}{q^{7/2}}+2 q^{5/2}-\frac{2}{q^{5/2}}-4 q^{3/2}+\frac{3}{q^{3/2}}+3 \sqrt{q}-\frac{4}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial z^3 a^{-3} -a^3 z+2 z a^{-3} -a^3 z^{-1} -z^5 a^{-1} +2 a z^3-4 z^3 a^{-1} +5 a z-5 z a^{-1} +3 a z^{-1} -2 a^{-1} z^{-1} (db)
Kauffman polynomial z^6 a^{-4} -4 z^4 a^{-4} +a^4 z^2+3 z^2 a^{-4} -a^4+2 z^7 a^{-3} -9 z^5 a^{-3} +2 a^3 z^3+11 z^3 a^{-3} -2 a^3 z-5 z a^{-3} +a^3 z^{-1} +z^8 a^{-2} +a^2 z^6-2 z^6 a^{-2} -3 a^2 z^4-4 z^4 a^{-2} +6 a^2 z^2+5 z^2 a^{-2} -3 a^2+2 a z^7+4 z^7 a^{-1} -9 a z^5-18 z^5 a^{-1} +16 a z^3+25 z^3 a^{-1} -11 a z-14 z a^{-1} +3 a z^{-1} +2 a^{-1} z^{-1} +z^8-2 z^6-3 z^4+7 z^2-3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-3-2-1012345χ
10        1-1
8       1 1
6      11 0
4     31  2
2    12   1
0   32    1
-2  12     1
-4 12      -1
-6 1       1
-81        -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n39.gif

L10n39

L10n41.gif

L10n41