L10n52

From Knot Atlas
Jump to: navigation, search

L10n51.gif

L10n51

L10n53.gif

L10n53

Contents

L10n52.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n52 at Knotilus!


Link Presentations

[edit Notes on L10n52's Link Presentations]

Planar diagram presentation X8192 X9,19,10,18 X14,6,15,5 X16,12,17,11 X3,10,4,11 X12,7,13,8 X20,15,7,16 X6,14,1,13 X4,19,5,20 X17,2,18,3
Gauss code {1, 10, -5, -9, 3, -8}, {6, -1, -2, 5, 4, -6, 8, -3, 7, -4, -10, 2, 9, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L10n52 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{-u^2 v^2+2 u^2 v-u^2+u v^4-3 u v^3+5 u v^2-3 u v+u-v^4+2 v^3-v^2}{u v^2} (db)
Jones polynomial -2 q^{3/2}+4 \sqrt{q}-\frac{6}{\sqrt{q}}+\frac{7}{q^{3/2}}-\frac{8}{q^{5/2}}+\frac{6}{q^{7/2}}-\frac{5}{q^{9/2}}+\frac{3}{q^{11/2}}-\frac{1}{q^{13/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial z^3 a^5+z a^5+a^5 z^{-1} -z^5 a^3-3 z^3 a^3-5 z a^3-2 a^3 z^{-1} +3 z^3 a+5 z a+2 a z^{-1} -2 z a^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial -2 a^4 z^8-2 a^2 z^8-4 a^5 z^7-7 a^3 z^7-3 a z^7-3 a^6 z^6+2 a^4 z^6+4 a^2 z^6-z^6-a^7 z^5+11 a^5 z^5+21 a^3 z^5+9 a z^5+7 a^6 z^4+2 a^4 z^4-7 a^2 z^4-2 z^4+2 a^7 z^3-9 a^5 z^3-26 a^3 z^3-18 a z^3-3 z^3 a^{-1} -2 a^6 z^2-a^4 z^2+4 a^2 z^2+3 z^2+4 a^5 z+12 a^3 z+12 a z+4 z a^{-1} -a^2-a^5 z^{-1} -2 a^3 z^{-1} -2 a z^{-1} - a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012χ
4        22
2       2 -2
0      42 2
-2     43  -1
-4    43   1
-6   35    2
-8  23     -1
-10 13      2
-12 2       -2
-141        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n51.gif

L10n51

L10n53.gif

L10n53