L10n56

From Knot Atlas
Jump to: navigation, search

L10n55.gif

L10n55

L10n57.gif

L10n57

Contents

L10n56.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n56 at Knotilus!


Link Presentations

[edit Notes on L10n56's Link Presentations]

Planar diagram presentation X10,1,11,2 X18,11,19,12 X20,5,9,6 X7,15,8,14 X12,4,13,3 X13,16,14,17 X15,7,16,6 X8,9,1,10 X4,19,5,20 X2,18,3,17
Gauss code {1, -10, 5, -9, 3, 7, -4, -8}, {8, -1, 2, -5, -6, 4, -7, 6, 10, -2, 9, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n56 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (u+1)^2 (v-1)}{u^{3/2} \sqrt{v}} (db)
Jones polynomial -q^{5/2}+q^{3/2}-\sqrt{q}-\frac{1}{q^{5/2}}-\frac{1}{q^{9/2}}+\frac{1}{q^{11/2}} (db)
Signature -2 (db)
HOMFLY-PT polynomial a^5 (-z)-a^3 z+a z^5+5 a z^3-z^3 a^{-1} +5 a z+a z^{-1} -3 z a^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial -a^2 z^8-z^8-a^3 z^7-2 a z^7-z^7 a^{-1} +6 a^2 z^6+6 z^6-a^5 z^5+6 a^3 z^5+13 a z^5+6 z^5 a^{-1} -a^6 z^4-8 a^2 z^4-9 z^4+4 a^5 z^3-8 a^3 z^3-22 a z^3-10 z^3 a^{-1} +3 a^6 z^2+a^4 z^2+a^2 z^2+3 z^2-2 a^5 z+2 a^3 z+10 a z+6 z a^{-1} +1-a z^{-1} - a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-101234χ
6         11
4          0
2       11 0
0     21   1
-2    121   0
-4   111    1
-6   1      1
-8 111      1
-10          0
-121         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2 i=0
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z} {\mathbb Z}^{2} {\mathbb Z}^{2}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n55.gif

L10n55

L10n57.gif

L10n57