L10n61

From Knot Atlas
Jump to: navigation, search

L10n60.gif

L10n60

L10n62.gif

L10n62

Contents

L10n61.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n61 at Knotilus!


Link Presentations

[edit Notes on L10n61's Link Presentations]

Planar diagram presentation X12,1,13,2 X16,7,17,8 X5,1,6,10 X3746 X9,5,10,4 X20,17,11,18 X18,13,19,14 X14,19,15,20 X2,11,3,12 X8,15,9,16
Gauss code {1, -9, -4, 5, -3, 4, 2, -10, -5, 3}, {9, -1, 7, -8, 10, -2, 6, -7, 8, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n61 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-2 u^3 v^2+2 u^3 v-u^3+2 u^2 v^2-2 u^2 v-2 u v^2+2 u v-v^3+2 v^2-2 v}{u^{3/2} v^{3/2}} (db)
Jones polynomial -\frac{6}{q^{9/2}}+\frac{5}{q^{7/2}}-\frac{7}{q^{5/2}}+\frac{5}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{2}{q^{13/2}}+\frac{4}{q^{11/2}}+2 \sqrt{q}-\frac{4}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial -z a^7-2 a^7 z^{-1} +3 z^3 a^5+9 z a^5+7 a^5 z^{-1} -2 z^5 a^3-9 z^3 a^3-14 z a^3-7 a^3 z^{-1} +2 z^3 a+4 z a+2 a z^{-1} (db)
Kauffman polynomial a^8 z^6-4 a^8 z^4+5 a^8 z^2-2 a^8+2 a^7 z^7-7 a^7 z^5+7 a^7 z^3-4 a^7 z+2 a^7 z^{-1} +a^6 z^8+2 a^6 z^6-17 a^6 z^4+20 a^6 z^2-8 a^6+6 a^5 z^7-20 a^5 z^5+22 a^5 z^3-17 a^5 z+7 a^5 z^{-1} +a^4 z^8+5 a^4 z^6-24 a^4 z^4+29 a^4 z^2-13 a^4+4 a^3 z^7-12 a^3 z^5+18 a^3 z^3-16 a^3 z+7 a^3 z^{-1} +4 a^2 z^6-11 a^2 z^4+17 a^2 z^2-8 a^2+a z^5+3 a z^3-3 a z+2 a z^{-1} +3 z^2-2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-101χ
2        2-2
0       2 2
-2      43 -1
-4     31  2
-6    24   2
-8   43    1
-10  13     2
-12 13      -2
-14 1       1
-161        -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}_2^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n60.gif

L10n60

L10n62.gif

L10n62