L10n77

From Knot Atlas
Jump to: navigation, search

L10n76.gif

L10n76

L10n78.gif

L10n78

Contents

L10n77.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n77 at Knotilus!


Link Presentations

[edit Notes on L10n77's Link Presentations]

Planar diagram presentation X6172 X5,14,6,15 X3849 X15,2,16,3 X16,7,17,8 X9,18,10,19 X11,20,12,13 X13,12,14,5 X4,17,1,18 X19,10,20,11
Gauss code {1, 4, -3, -9}, {-2, -1, 5, 3, -6, 10, -7, 8}, {-8, 2, -4, -5, 9, 6, -10, 7}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif
A Morse Link Presentation L10n77 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^3 w^3-1}{\sqrt{u} v^{3/2} w^{3/2}} (db)
Jones polynomial  q^{-12} + q^{-8} + q^{-6} + q^{-4} (db)
Signature -8 (db)
HOMFLY-PT polynomial a^{12} z^2+a^{12} z^{-2} +3 a^{12}-a^{10} z^6-7 a^{10} z^4-15 a^{10} z^2-2 a^{10} z^{-2} -11 a^{10}+a^8 z^8+8 a^8 z^6+21 a^8 z^4+21 a^8 z^2+a^8 z^{-2} +8 a^8 (db)
Kauffman polynomial a^{16}+a^{12} z^4-5 a^{12} z^2-a^{12} z^{-2} +5 a^{12}+a^{11} z^7-7 a^{11} z^5+15 a^{11} z^3-11 a^{11} z+2 a^{11} z^{-1} +a^{10} z^8-8 a^{10} z^6+22 a^{10} z^4-26 a^{10} z^2-2 a^{10} z^{-2} +13 a^{10}+a^9 z^7-7 a^9 z^5+15 a^9 z^3-11 a^9 z+2 a^9 z^{-1} +a^8 z^8-8 a^8 z^6+21 a^8 z^4-21 a^8 z^2-a^8 z^{-2} +8 a^8 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10χ
-7        11
-9        11
-11      1  1
-13    1    1
-15    21   1
-17  1      1
-19  11     0
-2111       0
-2321       1
-251        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-9 i=-7 i=-5
r=-8 {\mathbb Z} {\mathbb Z}^{2} {\mathbb Z}
r=-7 {\mathbb Z} {\mathbb Z}
r=-6 {\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}_2 {\mathbb Z}
r=-1
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n76.gif

L10n76

L10n78.gif

L10n78