L10n80

From Knot Atlas
Jump to: navigation, search

L10n79.gif

L10n79

L10n81.gif

L10n81

Contents

L10n80.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n80 at Knotilus!


Link Presentations

[edit Notes on L10n80's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X11,18,12,19 X7,14,8,15 X13,8,14,9 X15,13,16,20 X19,17,20,16 X17,12,18,5 X2536 X4,9,1,10
Gauss code {1, -9, 2, -10}, {9, -1, -4, 5, 10, -2, -3, 8}, {-5, 4, -6, 7, -8, 3, -7, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L10n80 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(2)-1) \left(t(3) t(2)^2-2 t(2)^2-t(1) t(2)-t(3) t(2)+t(1)-2 t(1) t(3)\right)}{\sqrt{t(1)} t(2)^{3/2} \sqrt{t(3)}} (db)
Jones polynomial 2 q^{-1} -4 q^{-2} +5 q^{-3} -5 q^{-4} +6 q^{-5} -4 q^{-6} +4 q^{-7} - q^{-8} + q^{-9} (db)
Signature -2 (db)
HOMFLY-PT polynomial a^{10} z^{-2} -2 a^8 z^{-2} -3 a^8+3 z^2 a^6+a^6 z^{-2} +3 a^6-z^4 a^4-z^2 a^4-a^4+2 z^2 a^2+a^2 (db)
Kauffman polynomial z^6 a^{10}-5 z^4 a^{10}+8 z^2 a^{10}+a^{10} z^{-2} -5 a^{10}+z^7 a^9-2 z^5 a^9-3 z^3 a^9+6 z a^9-2 a^9 z^{-1} +z^8 a^8-z^6 a^8-6 z^4 a^8+10 z^2 a^8+2 a^8 z^{-2} -7 a^8+4 z^7 a^7-11 z^5 a^7+5 z^3 a^7+2 z a^7-2 a^7 z^{-1} +z^8 a^6+z^6 a^6-6 z^4 a^6+3 z^2 a^6+a^6 z^{-2} -2 a^6+3 z^7 a^5-8 z^5 a^5+11 z^3 a^5-6 z a^5+3 z^6 a^4-5 z^4 a^4+4 z^2 a^4+z^5 a^3+3 z^3 a^3-2 z a^3+3 z^2 a^2-a^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10χ
-1        22
-3       31-2
-5      21 1
-7     33  0
-9    32   1
-11   35    2
-13  11     0
-15  3      3
-1711       0
-191        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-8 {\mathbb Z} {\mathbb Z}
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n79.gif

L10n79

L10n81.gif

L10n81